GIẢI CHI TIẾT Giải SGK Toán 8 (CTST) Bài 4: Hình bình hành – Hình thoi
================
Giải bài tập Toán lớp 8 Bài 4: Hình bình hành – Hình thoi
Giải Toán 8 trang 73 Tập 1
Bài tập
Giải Toán 8 trang 80 Tập 1
Bài 1 trang 80 Toán 8 Tập 1 : Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
Lời giải:
• Hình 19a):
Ta có và hai góc này ở vị trí so le trong nên AB // CD.
Để tứ giác ABCD là hình bình hành thì có hai trường hợp sau:
+) Trường hợp 1: Tứ giác ABCD có hai cặp cạnh đối song song. Do đó cần thêm điều kiện AD // BC.
+) Trường hợp 2: Tứ giác ABCD có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện AB = CD.
• Hình 19b): Tứ giác EFGH đã có một cặp cạnh đối bằng nhau (EH = GF).
Để tứ giác EFGH là hình bình hành thì có hai trường hợp sau:
+) Trường hợp 1: Tứ giác EFGH có hai cặp cạnh đối bằng nhau. Do đó cần thêm điều kiện EF = GH.
+) Trường hợp 2: Tứ giác EFGH có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện EH // GF.
• Hình 19c):
Ta có OQ = ON nên O là trung điểm của NQ.
Để tứ giác MNPQ là hình bình hành thì tứ giác MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường. Do đó cần thêm điều kiện O là trung điểm của MP.
• Hình 19d): Tứ giác STUV đã có một cặp góc đối bằng nhau .
Để tứ giác STUV là hình bình hành thì tứ giác STUV có cac cặp góc đối bằng nhau. Do đó cần thêm điều kiện .
Bài 2 trang 80 Toán 8 Tập 1 : Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).
a) Chứng minh tứ giác AHCK là hình bình hành.
b) Gọi I là trung điểm của HK. Chứng minh IB = ID.
Lời giải:
a) Do ABCD là hình bình hành nên AD // BC và AD = BC.
Do AD // BC nên (so le trong)
Xét DADH và DCBK có:
;
AD = BC (chứng minh trên);
(do ).
Do đó DADH = DCBK (cạnh huyền – góc nhọn).
Suy ra AH = CK (hai cạnh tương ứng).
Ta có AH ⊥ DB và CK ⊥ DB nên AH // CK.
Tứ giác AHCK có AH // CK và AH = CK nên AHCK là hình bình hành (dấu hiệu nhận biết).
b) Do AHCK là hình bình hành (câu a) nên hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của HK (giả thiết) nên I là trung điểm của AC.
Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC nên I là trung điểm của BD, hay IB = ID.
Bài 3 trang 80 Toán 8 Tập 1 : Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.
a) Chứng minh rằng tứ giác EBFD là hình bình hành.
b) Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Chứng minh rằng ba điểm E, O, F thẳng hàng.
Lời giải:
a) ABCD là hình bình hành nên AD = BC và AD // BC.
Mà E là trung điểm của AD nên AE = ED;
F là trung điểm của BC nên BF = FC.
Suy ra DE = BF.
Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).
b) Ta có O là giao điểm của hai đường chéo của hình bình hành ABCD nên O là trung điểm của BD.
Do EBFD là hình bình hành nên hai đường chéo BD và EF cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của BD nên O là trung điểm của EF.
Vậy ba điểm E, O, F thẳng hàng.
Bài 4 trang 80 Toán 8 Tập 1 : Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F.
a) Chứng minh DE // BF.
b) Tứ giác DEBF là hình gì?
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD và .
Vì DE là tia phân giác của góc D nên .
Vì BF là tia phân giác của góc B nên .
Do đó .
Do AB // CD nên (so le trong).
Suy ra
Mà hai góc này ở vị trí so le trong nên DE // BF.
b) Tứ giác DEBF có EB // FD (do AB // CD) và DE // BF nên là hình bình hành (dấu hiệu nhận biết).
Bài 5 trang 80 Toán 8 Tập 1 : Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AEFI là hình thang.
b) Chứng minh DE = EF = FB.
Lời giải:
a) Do ABCD là hình bình hành nên AB = CD và AB // CD.
Vì I là trung điểm của AB nên .
Vì K là trung điểm của CD nên .
Do đó AI = CK.
Tứ giác AICK có AI // CK (do AB // CD) và AI = CK nên là hình bình hành (dấu hiệu nhận biết).
Suy ra AK // CI hay AE // IF.
Tứ giác AEFI có AE // IF nên là hình thang.
b) Gọi O là giao điểm của hai đường chéo hình bình hành ABCD.
Do đó O là trung điểm của AC và BD.
Xét DABC có BO, CI là hai đường trung tuyến của tam giác và BO, CI cắt nhau tại F nên F là trọng tâm của DABC.
Suy ra và .
Chứng minh tương tự đối với DACD ta cũng có E là trọng tâm của DACD.
Suy ra và .
Lại có O là trung điểm BD nên BO = DO.
Do đó và
Mặt khác .
Suy ra .
Vậy DE = EF = FB.
Giải Toán 8 trang 81 Tập 1
Bài 6 trang 81 Toán 8 Tập 1 : Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi.
Lời giải:
Ta có AE = EB nên AB = 2AE.
DG = GC nên DC = 2DG.
Mà AE = DG nên AB = DC.
Chứng minh tương tự ta cũng có: AD = BC.
Tứ giác ABCD có AB = DC và AD = BC nên là hình bình hành (dấu hiệu nhận biết).
Suy ra AB // CD và AD // BC.
Lại có AD ⊥ AB nên AD ⊥ CD; AB ⊥ BC; BC ⊥ CD.
Xét DAEH và DBEF có:
; AE = BE; AH = BF.
Do đó DAEH = DBEF (hai cạnh góc vuông).
Suy ra HE = FE (hai cạnh tương ứng).
Chứng minh tương tự ta cũng có: HE = HG; HE = FG.
Do đó HE = EF = FG = GH.
Tứ giác EFGH có HE = EF = FG = GH nên là hình thoi.
Bài 7 trang 81 Toán 8 Tập 1 : Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Lời giải:
Do ABCD là hình thoi nên hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường.
Do đó và .
Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:
AB2 = OA2 + OB2
Suy ra .
Bài 8 trang 81 Toán 8 Tập 1 : Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABDC là hình thoi.
b) Gọi E, F lần lượt là trung điểm của AB và AC, lấy điểm O sao cho E là trung điểm của OM. Chứng minh hai tam giác AOB và MBO vuông và bằng nhau.
c) Chứng minh tứ giác AEMF là hình thoi.
Lời giải:
a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD ⊥ BC.
Tứ giác ABDC có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Lại có hai đường chéo AD ⊥ BC nên hình bình hành ABDC là hình thoi.
b) Ta có E là trung điểm của AB và OM nên hai đường chéo của tứ giác OAMB cắt nhau tại trung điểm của mỗi đường.
Do đó tứ giác OAMB là hình bình hành.
Suy ra OA // BM và OB // AM.
Ta có OB // AM và AM ⊥ BM nên OB ⊥ BM, do đó DMBO vuông tại B.
Ta có OA // BM và OB ⊥ BM nên OA ⊥ OB, do đó DAOB vuông tại O.
Do OAMB là hình bình hành nên OA = BM và OB = AM.
Xét DMBO vuông tại B và DAOB vuông tại O có:
OB = AM; BM = OA
Do đó DMBO = DAOB (hai cạnh góc vuông).
Bài 9 trang 81 Toán 8 Tập 1 : Tìm các hình bình hành và hình thang có trong Hình 22.
Lời giải:
Giả sử Hình 22 được ghép bởi các hình (1), (2), (3), (4), (5), (6) và (7) như hình vẽ trên.
‒ Trong Hình 22 có các hình bình hành:
• Hình (4);
• Hình (6);
• Hình ghép bởi các hình (1), (2), (3), (4), (5), (6) và (7).
‒ Trong Hình 22 có các hình thang:
• Bao gồm các hình bình hành kể trên;
• Hình ghép bởi các hình (2), (3), (4), (5), (6) và (7);
• Hình ghép bởi các hình (4), (5), (6) và (7);
• Hình ghép bởi các hình (4), (5) và (6);
• Hình ghép bởi các hình (5), (6) và (7);
• Hình ghép bởi các hình (4) và (5);
• Hình ghép bởi các hình (5) và (6);
• Hình ghép bởi các hình (6) và (7).
==== ~~~~~~ ====
=============
THUỘC: GIẢI BÀI TẬP SÁCH GIÁO KHOA TOÁN LỚP 8 – CHÂN TRỜI SÁNG TẠO TẬP 1
Để lại một bình luận