• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 - Kết nối / Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

Ngày 11/04/2018 Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Giai SBT chuong 1 hinh hoc 10

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

Bài 2: Tổng và hiệu của hai vec tơ – Toán 10 – Đáp án và lời giải bài 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18 và 1.19 trang 23 Sách bài tập (SBT) Toán Hình lớp 10.

Bài 1.8 trang 23 SBT Toán Hình 10

Cho năm điểm A, B, C, D và E. Hãy xác định tổng \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE} \)

Gợi ý làm bài

\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DE} = \overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {DE} \cr
& = \overrightarrow {AD} + \overrightarrow {DE} = \overrightarrow {AE} \cr} \)


Bài 1.9

Cho bốn điểm A, B, C và D. Chứng minh \(\overrightarrow {AB}  – \overrightarrow {CD}  = \overrightarrow {AC}  – \overrightarrow {BD} \)

Gợi ý làm bài

\(\eqalign{
& \overrightarrow {AB} – \overrightarrow {CD} = \overrightarrow {AC} – \overrightarrow {BD} \cr
& \Leftrightarrow \overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AC} + \overrightarrow {CD} \cr
& \Leftrightarrow \overrightarrow {AD} = \overrightarrow {AD} \cr} \)

Như vậy hệ thức cần chứng minh tương đương với đẳng thức đúng.


Bài 1.10 trang 23 Sách bài tập Toán 10

Cho hai vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) sao cho \(\overrightarrow a  + \overrightarrow b  = \overrightarrow 0 \)

a)Dựng \(\overrightarrow {OA}  = \overrightarrow a ,\overrightarrow {OB}  = \overrightarrow b \). Chứng minh O là trung điểm của AB.

b)Dựng \(\overrightarrow {OA}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b \). Chứng minh O=B

Trả lời

a) \(\overrightarrow {OA}  – \overrightarrow {OB}  = \overrightarrow 0  =  > \overrightarrow {OB}  =  – \overrightarrow {OA}  =  > OB = OA\) ba điểm A, O, B thẳng hàng và điểm O ở giữa A và B. Suy ra O là trung điểm của AB.

b) \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0  =  > \overrightarrow {OB}  = \overrightarrow 0  =  > B \equiv O\)


Bài 1.11 trang 23

Gọi O là tâm của tam giác đều ABC. Chứng minh rằng \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow 0 \)

Trả lời

Trong tam giác đều ABC, tâm O của đường tròn ngoại tiếp cũng là trọng tâm của tam giác. Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow 0 \)


Bài 1.12

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0\)

Gợi ý làm bài

\(\eqalign{
& \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = (\overrightarrow {OA} + \overrightarrow {OC} ) + (\overrightarrow {OB} + \overrightarrow {OD} ) \cr
& = \overrightarrow 0 + \overrightarrow 0 = \overrightarrow 0 \cr} \)


Bài 1.13 trang 23 SBT Toán Hình 10

Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF= FC; BE cắt AM tại N. Chứng minh \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) là hai vec tơ đối nhau.

Bài giải

(h. 1.41)

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

FM // BE vì FM là đường trung bình của tam giác CEB.

Ta có EA = EF . Vậy EN là đường trung bình của tam giác AFM. Vậy $\(\overrightarrow {NA}  =  – \overrightarrow {NM} \)


Bài 1.14

Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:

a) \(\overrightarrow {MA}  – \overrightarrow {MB}  = \overrightarrow {BA} \)

b) \(\overrightarrow {MA}  – \overrightarrow {MB}  = \overrightarrow {AB} \)

c) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \)

Đáp án

a) \(\overrightarrow {MA}  – \overrightarrow {MB}  = \overrightarrow {BA}  \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {BA} \). Vậy mọi điểm M đều thỏa mãn hệ thức a).

b) \(\overrightarrow {MA}  – \overrightarrow {MB}  = \overrightarrow {AB}  \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {AB}  \Leftrightarrow A \equiv B\), vô lí. Vậy không có điểm M nào thỏa mãn hệ thức b).

c) \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {MA}  =  – \overrightarrow {MB} \). Vậy M là trung điểm của đoạn thẳng AB.


Bài 1.15 trang 23

Cho tam giác ABC. Chứng minh rằng nếu \(\left| {\overrightarrow {CA}  – \overrightarrow {CB} } \right| = \left| {\overrightarrow {CA}  – \overrightarrow {CB} } \right|\) thì tam giác ACB là tam giác vuông cân tại C.

Gợi ý làm bài

Vẽ hình bình hành CADB.

Ta có \(\overrightarrow {CA}  + \overrightarrow {CB}  = \overrightarrow {CD} \), do đó \(\left| {\overrightarrow {CA}  + \overrightarrow {CB} } \right| = CD\)

Vì \(\overrightarrow {CA}  – \overrightarrow {CB}  = \overrightarrow {BA} \), do đó \(\left| {\overrightarrow {CA}  – \overrightarrow {CB} } \right| = BA\)

Từ \(\left| {\overrightarrow {CA}  + \overrightarrow {CB} } \right| = \left| {\overrightarrow {CA}  – \overrightarrow {CB} } \right|\) suy ra CD = AB (h.1.42)

Vậy tứ giác CADB là hình chữ nhật. Ta có tam giác ACB vuông tại C.

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10


Bài 1.16 trang 23

Cho ngũ giác ABCDE. Chứng minh \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {AE}  – \overrightarrow {DE} \)

Giải

\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} – \overrightarrow {DE} \cr
& \Leftrightarrow \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AE} + \overrightarrow {ED} \cr
& \Leftrightarrow \overrightarrow {AD} = \overrightarrow {AD} \cr} \)


Bài 1.17 trang 23

Cho ba điểm O, A, B không thẳng hàng. Với điều kiện nào thì vec tơ \(\overrightarrow {OA}  + \overrightarrow {OB} \) nằm trên đường phân giác của góc \(\widehat {AOB}\)?

Bài giải

\(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC} \) trong đó OACB là hình bình hành. OC là phân giác góc \(\widehat {AOB}\) khi và chỉ khi OACB là hình thoi, tức là OA = OB.


Bài 1.18 trang 23

Cho hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) có điểm đặt O và tạo với nhau góc \({60^0}\). Tìm cường độ tổng hợp lực của hai lực ấy biết rằng cường độ của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) đều là 100N.

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow F  = \overrightarrow {OA} \)

\(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = OA = 100\sqrt 3 \)

Vậy cường độ của hợp lực là \(100\sqrt 3 N\)


Bài 1.19

Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng:

a) \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  – \overrightarrow {OD} \)

b) \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Gợi ý làm bài

(Xem h.1.44)

Giải SBT Bài 2: Tổng và hiệu của hai vec tơ – Chương 1 – Hình học 10

a) \(\overrightarrow {AB}  = \overrightarrow {OB}  – \overrightarrow {OA} \)

\(\overrightarrow {DC}  = \overrightarrow {OC}  – \overrightarrow {OD} \)

Vì \(\overrightarrow {AB}  = \overrightarrow {DC} \) nên ta có \(\overrightarrow {OB}  – \overrightarrow {OA}  = \overrightarrow {OC}  – \overrightarrow {OD} \)

Vậy \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow {OA}  + \overrightarrow {OC} \)

b) Tứ giác AMOE là hình bình hành nên ta có \(\overrightarrow {ME}  = \overrightarrow {MA}  + \overrightarrow {MO} (1)\)

Tứ giác OFCN là hình bình hành nên ta có \(\overrightarrow {FN}  = \overrightarrow {FO}  + \overrightarrow {FC} (2)\)

Từ (1) và (2) suy ra:

\(\overrightarrow {ME}  + \overrightarrow {EN}  = \overrightarrow {MA}  + \overrightarrow {MO}  + \overrightarrow {FO}  + \overrightarrow {FC}\)

\( = (\overrightarrow {MA}  + \overrightarrow {FO} ) + (\overrightarrow {MO}  + \overrightarrow {FC} ) = \overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD} \)

(Vì \(\overrightarrow {FO}  = \overrightarrow {BM} ,\overrightarrow {MO}  = \overrightarrow {BF} \))

Vậy \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Bài liên quan:

  1. Giải SBT Đề kiểm tra Chương 1 – Hình học 10
  2. Giải SBT Ôn tập Chương 1 – Hình học 10
  3. Giải SBT Bài 4: Hệ trục tọa độ – Chương 1 – Hình học 10
  4. Giải SBT Bài 3: Tích của vec tơ với một số – Chương 1 – Hình học 10
  5. Giải SBT Bài 1: Các định nghĩa – Chương 1 – Hình học 10

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.