• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập Toán 10 - Chân trời / Giải bài 4 trang 55 SBT Toán 10 – CTST

Giải bài 4 trang 55 SBT Toán 10 – CTST

Ngày 16/09/2022 Thuộc chủ đề:Giải sách bài tập Toán 10 - Chân trời Tag với:Bài 2. Hàm số bậc hai - SBT Toán 10 CTST

Giải bài 4 trang 55 SBT Toán 10 – CTST – CHÂN TRỜI SÁNG TẠO
THUỘC BÀI SỐ: Bài 2. Hàm số bậc hai – SBT Toán 10 CTST

=======

Đề bài

Tìm công thức hàm số bậc hai biết:

a) Đồ thị hàm số đi qua 3 điểm \(A\left( {1; – 3} \right),B\left( {0; – 2} \right),C\left( {2; – 10} \right)\)

b) Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3\), cắt trục tung tại điểm có tung độ bằng \( – 16\) và một trong hai giao điểm với trục hoành có hoành độ là \( – 2\)

Phương pháp giải – Xem chi tiết

a) Bước 1: Đặt phương trình dạng tổng quát \(y = a{x^2} + bx + c\)

Bước 2: Thay tọa độ các điểm mà đồ thị hàm số đi qua, lập hệ phương trình và xác định a, b, c

b) Sử dụng các tính chất của đồ thị hàm số bậc 2 và xác định các hệ số a, b, c

Lời giải chi tiết

a) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)

Đồ thị hàm số cắt trục tung tại điểm \(B\left( {0; – 2} \right)\) nên \(c =  – 2\). Vậy phương trình có dạng \(y = a{x^2} + bx – 2\)

Mặt khác đồ thị hàm số đi qua điểm \(A\left( {1; – 3} \right),C\left( {2; – 10} \right)\) thay tọa độ hai điểm vào phương trình \(y = a{x^2} + bx – 2\)ta có hệ sau:

\(\begin{array}{l}\left\{ \begin{array}{l} – 3 = a{.1^2} + b – 2\\ – 10 = a{.2^2} + b.2 – 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b =  – 1\\4{\rm{a}} + 2b =  – 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  – 3\\b = 2\end{array} \right.\\\end{array}\)

Vậy hàm số cần tìm có công thức là \(y =  – 3{x^2} + 2x – 2\)

b) Giả sử phương trình bậc 2 cần tìm có dạng tổng quát \(y = a{x^2} + bx + c\)

Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \( – 16\) suy ra \(c =  – 16\)

Suy ra hàm số có công thức dạng \(y = a{x^2} + bx – 16\)

Đồ thị hàm số có trục đối xứng là đường thẳng \(x = 3 \Rightarrow  – \frac{b}{{2a}} = 3 \Rightarrow b =  – 6{\rm{a}}\) (1)

Mặt khác đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \( – 2\)nên \(0 = a{\left( { – 2} \right)^2} + b\left( { – 2} \right) – 16 \Leftrightarrow 4a – 2b = 16\) (2)

Từ (1) và (2) ta tìm được \(a = 1,b =  – 6\)

Vậy hàm số cần tìm có dạng \(y = {x^2} – 6x – 16\)

 

============

Thuộc chủ đề: Giải sách bài tập toán 10 – CHÂN TRỜI

Bài liên quan:

  1. Giải bài 7 trang 56 SBT Toán 10 – CTST
  2. Giải bài 6 trang 55 SBT Toán 10 – CTST
  3. Giải bài 5 trang 55 SBT Toán 10 – CTST
  4. Giải bài 3 trang 55 SBT Toán 10 – CTST
  5. Giải bài 2 trang 55 SBT Toán 10 – CTST
  6. Giải bài 1 trang 54 SBT Toán 10 – CTST

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Chân trời

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.