• Skip to main content
  • Skip to primary sidebar
  • Học toán
  • Sách toán
  • Môn Toán
  • Đề thi toán
    • Đề KT 1 tiết môn toán
    • Đề thi HKI môn toán
    • Đề thi HKII môn toán
    • Đề thi toán tuyển sinh 10
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
  • Bài mới

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán



You are here: Home / Trắc nghiệm Khối đa diện / Đề: Cho hình chóp S.ABCD có (SAB) và (SAD) cùng vuông góc (ABCD). Đường thẳng nào trong các đường thẳng sau là đường cao của hình chóp?

Đề: Cho hình chóp S.ABCD có (SAB) và (SAD) cùng vuông góc (ABCD). Đường thẳng nào trong các đường thẳng sau là đường cao của hình chóp?

22/05/2019 by admin Leave a Comment

khoi da dien

  • Câu hỏi:

    Cho hình chóp S.ABCD có (SAB) và (SAD) cùng vuông góc (ABCD). Đường thẳng nào trong các đường thẳng sau là đường cao của hình chóp?

    • A. SC
    • B. SB
    • C. SA
    • D. SD
    Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
    Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

    Đáp án đúng: C

    \(\left\{ \begin{array}{l} \left( {SAB} \right) \bot (ABCD)\\ \left( {SAD} \right) \bot (ABCD) \end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)

    Vậy SA là đường cao của khối chóp.

  • ======
    Xem lý thuyết Khái niệm về khối đa diện

    Bài học cùng chương bài

    1. Đề: Hình chóp tứ giác đều S.ABCD có góc tạo bởi mặt bên và mặt đáy bằng \(45^0\). Thể tích của hình chóp là  \(\frac{4}{3}{a^3}\). Hỏi cạnh hình vuông mặt đáy bằng bao nhiêu.           
    2. Đề: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, thể tích khối chóp là \(a^3\). Tính chiều cao h của hình chóp.
    3. Đề: Cho khối lăng trụ tam giác đều có tất cả các cạnh bằng a và có thể tích \(V = 16\sqrt 3 \left( {d{m^3}} \right)\). Tính giá trị của a.
    4. Đề: Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Tính diện tích tam giác ABC, biết \(SA = 2,SB = 4,SC = 5.\)
    5. Đề: Cho khối lăng trụ (T) có chiều cao bằng a và thể tích bằng \(4{a^3}.\) Tính diện tích đáy S của (T).
    6. Đề: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, , hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Tính chiều cao h của khối chóp H.SBD theo a.
    7. Đề: Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=a, SB=3a, SC=4a. Tìm độ dài đường cao SH của hình chóp. 
    8. Đề: Cho hình chóp tứ giác đều S.ABCD. Trên các cạnh SA, SB, SC ta lấy các điểm \({A_1},\,{B_1},\,{C_1}\) sao cho: \(\frac{{S{A_1}}}{{SA}} = \frac{2}{3};\,\frac{{S{B_1}}}{{SB}} = \frac{1}{2};\,\frac{{S{C_1}}}{{SC}} = \frac{1}{3}\). Mặt phẳng \(\left( {{A_1}{B_1}{C_1}} \right)\) cắt SD tại \(D_1\). Tính tỉ số \(\frac{{S{D_1}}}{{SD}}\).
    9. Đề: Cho hình chóp S.MNPQ có đáy MNPQ là hình thoi tâm O, cạnh a,   Biết  Kết luận nào sau đây sai? 
    10. Đề: Cho khối chóp \(S.ABCD\), hỏi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) chia khối chóp \(S.ABCD\) thành mấy khối chóp?
    11. Đề: Hình chóp S.ABC có đáy ABC là tam giác vuông cân (BA = BC), canh bên SA  vuông góc với mặt phẳng đáy và có độ dài là \(a\sqrt{3},\) cạnh bên SB tạo với đáy một góc 600. Tính diện tích toàn phần của hình chóp? 
    12. Đề: Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D và \(\left( {ABC} \right) \bot \left( {BCD} \right)\). Có bao nhiêu mặt phẳng chứa hai điểm A, D và tiếp xúc với mặt cầu đường kính BC? 
    13. Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a và thể tích khối chóp đó bằng \(\sqrt 3 {a^3}.\) Tính chiều cao h của hình chóp đã cho.
    14. Đề: Cho khối tứ diện ABCD. Lấy một điểm M nằm giữa A và B, một điểm N nằm giữa C và D. Bằng hai mặt phẳng (MCD) và (MAB) ta chia khối tứ diện đã cho thành 4 khối tứ diện nào sau đây?
    15. Đề: Một khối chóp có đáy là đa giác n cạnh. Mệnh đề nào sau đây là mệnh đề đúng?

    Chuyên mục: Trắc nghiệm Khối đa diện Thẻ: Trăc nghiệm khối đa diện vận dụng

    Reader Interactions

    Trả lời Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Primary Sidebar

    MỤC LỤC

    • Đề: Cho hình chóp đều S.ABC có cạnh đáy bằng a, khoảng cách giữa cạnh bên SA và cạnh đáy BC bằng \(\frac{{3a}}{4}\). Thể tích khối chóp S.ABC là:
    • Đề: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có \(AA' = a\sqrt 3 \). Gọi I là giao điểm của AB’ và A’B. Cho biết khoảng cách từ I đến mặt phẳng (BCC’B’) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích khối lăng trụ ABC.A’B’C’.
    • Đề: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, mặt bên (SCD) tạo với đáy một góc \(\varphi = {60^0}\). Thể tích khối chóp S.ABCD là:
    • Đề: Một khối lăng trụ có chiều cao bằng \(2a\), diện tích đáy bằng \(2{a^2}\). Tính thể tích V của khối lăng trụ:
    • Đề: Cho lăng trụ tam giác ABC.A'B'C' có đáy là tam giác vuông cân tại C. Hình chiếu vuông góc A' lên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Biết cạnh bên lăng trụ bằng 2a, đường cao lăng trụ bằng \(\frac{{a\sqrt 7 }}{2}.\) Tính theo a thể tích khối lăng trụ ABC.A'B'C' .
    • Đề: Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\), \(AB = 3a\), \(BC = 4a\), \(\left( {SBC} \right) \bot \left( {ABC} \right)\), \(SB = 2a\sqrt 3 \), \(\widehat {SBC} = {30^ \circ }\). Thể tích của \(S.ABC\) là:
    • Đề: Cho hình hộp đứng ABC.A¢B¢C¢D¢ có \(AB = a,\,\,A{\rm{D}} = 2{\rm{a}}.\) Góc tạo bởi AB’ và mặt phẳng (ABCD) bằng \({60^o}.\) Tính thể tích của khối chóp D.ABCD’. 
    • Đề: Cho hình chóp tam giác đều\(S.ABC\), cạnh đáy bằng \(a\),\(\widehat {{\rm{AS}}B} = {60^0}\). Thể tích của khối chóp\(S.ABC\)là
    • Đề: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh x, \(\widehat {BA{\rm{D}}} = {60^o},\) gọi \(I = AC \cap B{\rm{D}}.\) Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là H sao cho H là trung điểm của BI. Góc giữa SC và mặt phẳng (ABCD) bằng \({45^o}.\) Khi đó thể tích khối chóp S.ABCD bằng:
    • Đề: Một đứa trẻ dán 42 hình lập phương cạnh 1cm lại với nhau vừa đủ xung quanh mặt của một khối hộp chữ nhật tạo thành một khối hộp mới. Nếu chu vi đáy là 18cm thì chiều cao của khối hình hộp lúc này là bao nhiêu? 

    Bài viết mới

    • Ôn tập Chương 4 – Đại số 11 06/12/2019
    • Bài 3. Hàm số liên tục – Chương 4 – Đại số 11 06/12/2019
    • Bài 2. Giới hạn của hàm số – Chương 4 – Đại số 11 06/12/2019
    • Bài 1. Giới hạn của dãy số – Chương 4 – Đại số 11 06/12/2019
    • Ôn tập chương 3: Dãy số, cấp số cộng và cấp số nhân – Đại số 11 27/11/2019

    Sách Toán © 2015 - 2019 - Giải bài tập Toán, Lý, Hóa, Sinh, Anh, soạn Văn, Sách tham khảo và đề thi.
    THÔNG TIN:
    Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn