• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 11 / Bài 4: Vi phân – Chương 5 – Đại số 11

Bài 4: Vi phân – Chương 5 – Đại số 11

Đăng ngày: 08/12/2019 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Toán lớp 11

Mục lục:

  1. 1. Định nghĩa
  2. 2. Ứng dụng vào phép tính gần đúng
  3. 3. Các dạng toán
  4. Bài tập minh họa

1. Định nghĩa

Cho hàm số \(y=f(x)\) xác định trên (a;b) và có đạo hàm tại \(x \in (a;b).\)

Giả sử \(\Delta x\) là số gia của x sao cho \(x + \Delta x \in (a;b).\)

Vi phân của hàm số \(y=f(x)\) tại x là \(dy = df(x) = f'(x)dx.\)

2. Ứng dụng vào phép tính gần đúng

\(f({x_0} + \Delta x) \approx f({x_0}) + f'({x_0})\Delta x.\)

3. Các dạng toán

a) Dạng 1: Tìm vi phân của hàm số y=f(x)

Phương pháp:

  • Tính đạo hàm f'(x).
  • Vi phân của hàm số y=f(x) tại x là \(df(x) = f'(x)dx.\)
  • Vi phân của hàm số y=f(x) tại \(x_0\) là \(df(x_0) = f'(x_0)dx.\)

b) Dạng 2: Tìm giá trị gần đúng của một biểu thức

Phương pháp:

  • Lập hàm số \(y=f(x)\) và chọn \(x_0, \Delta x\) một cách thích hợp.
  • Tính đạo hàm \(f'(x), f'(x_0)\) và \(f(x_0).\)
  • Giá trị gần đúng của biểu thức \(P = f({x_0} + \Delta x) \approx f({x_0}) + f'({x_0})\Delta x.\)

Bài tập minh họa

Ví dụ 1:

Tìm vi phân của các hàm số sau:

a) \(f(x) = \sin x – x\cos x\).

b) \(f(x) = \frac{1}{{{x^3}}}\).

c) \(f(x) = x{\mathop{\rm cosx}\nolimits}\) tại \(x=\frac{\pi}{2}.\)

Hướng dẫn giải:

a) \(f'(x) = cosx – (cosx – xsinx) = xsinx\) nên \(df(x) = x\sin xdx.\)

b) \(f'(x) = – \frac{3}{{{x^4}}}\) nên \(df(x) = – \frac{3}{{{x^4}}}dx.\)

c) \(f'(x) = cosx – x\sin x \Rightarrow f’\left( {\frac{\pi }{2}} \right) = – \frac{\pi }{2}\) nên \(df\left( {\frac{\pi }{2}} \right) = – \frac{\pi }{2}dx.\)

Ví dụ 2:

Tính gần đúng các giá trị sau:

a) \(\sqrt {4,01}\).

b) \(\sin {29^0}\).

Hướng dẫn giải:

a) Đặt \(f(x) = \sqrt x .\)

Chọn \(x_0=4\) và \(\Delta x=0,01\) thì \(4,01=4+0,01=x_0+\Delta x.\)

\(f'(x)=\frac{1}{2 \sqrt x}\Rightarrow f'(4)=\frac{1}{2 \sqrt 4}=\frac{1}{4}.\)

\(f(4)=2.\)

Vậy: \(\sqrt {4,01} = f(4 + 0,01) \approx f(4) + f'(4).0,01 = 2,0025.\)

b) Đặt \(f(x)=sin x,\) chọn \(x_0=30^0\) và \(\Delta x=-1^0=-\frac{-\pi}{180}.\)

Ta có: \(29^0=30^0-1^0=x_0+\Delta x.\)

\(f'(x)=cos x,f'(30^0)=cos (30^0)=\frac{\sqrt 3}{2};f(30^0)=sin 30^0=\frac{1}{2}.\)

Vậy: \(sin 29^0 = f(30^0-1^0) \approx f(30^0)+f'(30^0).\left (- \frac{\pi}{180} \right )\approx 0,4849.\)

Tag với:Học chương 5 đại số 11

Bài liên quan:

  • Ôn tập cuối năm – Đại số – Giải tích 11
  • Ôn tập Chương 5 – Đại số 11
  • Bài 5: Đạo hàm cấp hai – Giải tích 11
  • Bài 3: Đạo hàm của hàm số lượng giác – Chương 5 – Đại số 11
  • Bài 2: Quy tắc tính đạo hàm – Chương 5 – Đại số 11
  • Bài 1: Định nghĩa và ý nghĩa của đạo hàm – Chương 5 – Đại số 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.