• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Chân trời / Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế – Chân trời

Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế – Chân trời

Ngày 12/08/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Chân trời Tag với:Học Toán 10 chương 4 - CTST

Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế – Chân trời
============

1.1. Giải tam giác

Giải tam giác là tìm sô đo các cạnh và các góc còn lại của tam giác khi ta biết được các yếu tố đủ đề xác định tam giác đó.

Để giải tam giác, ta thường sử dụng một cách hợp lí cáe hệ thức hượng như: định lí sin, định lí côsin và các công thức tính điện tích tam giác.

Ví dụ: Giải tam giác ABC trong các trường hợp sau:

a) AB =85, AC =95 và \(\widehat A = {40^0}\),

b) AB = 15, AC=25 và BC=30.

Giải

Đặt a = BC, b =AC, c = AB

a) Ta cần tính cạnh a và hai góc \(\widehat B,\widehat C\) 

Áp dụng định lí côsin, ta có

aề=B3+ c°— 2becos.4=953 + 853— 2.95.85, cos40° 3878,38

Suy ra a= J3878,38 z 62,3

Áp dung hệ quả định lí côsin, ta có:

\({a^2} = {b^2} + {c^2} – 2.b.c.\cos A = {95^2} + {85^2} – 2.95.85.cos{40^0} \approx 3878,38\) 

Suy ra \(a \approx \sqrt {3878,38}  \approx 62,3\) 

Áp dụng hệ quả định lí côsin, ta có:

\(\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}} \approx \frac{{62,{3^2} + {{85}^2} – {{95}^2}}}{{2.62,3.85}} \approx 0,197\) 

Suy ra: \(\widehat B \approx {78^0}38′,\widehat C \approx {180^0} – {40^0} – {78^0}38′ = {61^0}22’\) 

1.2. Áp dụng giải tam giác vào thực tế

Vận dụng giải tam giác giúp ta giải quyết rât nhiêu bài toán trong thực tê, đặc biệt là trong thiết kế và xây dựng.

Ví dụ 1: Một đường hầm được dự kiến xây dựng xuyên qua một ngọn núi. Để ước tính chiều đài của đường hàm, một kĩ sư đã thực hiện các phép đo và cho ra kết quả như Hình sau. Tính chiều đài của đường hầm tử các số liệu đã khảo sát được.

Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời 1

Giải

Áp dụng định lí côsin trong tam giác ABC, ta có:

\(A{B^2} = C{A^2} + C{B^2} – 2CA.CB.\cos C = 388{}^2 + {212^2} – 2.388.212.cos82,{4^0} \approx 173730\).

Suy ra: \(AB \approx \sqrt {173730}  = 417\left( m \right)\) 

Vậy đường hầm dài khoảng 417 m.

Ví dụ 2: 

Để xác định chiêu cao của một toà nhà cao tầng, một người đứng tại điểm AM, sử dụng giác kế nhìn thây đỉnh toà nhà với góc nâng \(\widehat {RQA} = {84^0}\), người đó lùi ra xa một khoảng cách LM = 49,4m thì nhìn thây đỉnh toà nhà với góc nâng \(\widehat {RPA} = {78^0}\). Tính chiều cao của toà nhà, biết rằng khoảng cách từ mặt đất đến ống ngắm của giác kê đó là PL = QM = 1,2m

Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời 2

Giải

Ta có: \(\widehat {PAQ} = \widehat {AQR} – \widehat {APR} = {84^0} – {78^0} = {6^0}\).

Áp dụng định lí sin trong tam giác APQ, ta có:

\(\frac{{AQ}}{{\sin P}} = \frac{{PQ}}{{\sin A}} \Rightarrow \frac{{AQ}}{{\sin {{78}^0}}} = \frac{{PQ}}{{\sin {6^0}}} \Rightarrow AQ = \frac{{PQ.\sin {{78}^0}}}{{\sin {6^0}}}\) 

Trong tam giác vuông AQR, ta có:

\(AR = AQ.\sin {84^0} = \frac{{PQ.\sin {{78}^0}.\sin {{84}^0}}}{{\sin {6^0}}} = \frac{{49,4.\sin {{78}^0}.\sin {{84}^0}}}{{\sin {6^0}}} \approx 460\left( m \right)\) 

Vậy chiều cao của tòa nhà là \(AO = AR + RO \approx 460 + 1,2 = 461,2\left( m \right).\)

Câu 1:  Giải tam giác ABC trong các trường hợp sau:

a) \(a = 17,4;\widehat B = {44^o}30′;\widehat C = {64^o}.\)

b) \(a = 10;b = 6;c = 8.\)

Hướng dẫn giải

a) Ta cần tính góc \(\widehat A\) và hai cạnh \(b,c.\)

Ta có: \(\widehat A = {180^o} – \widehat B – \widehat C = {180^o} – {44^o}30′ – {64^o} = {71^o}30′.\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{17,4}}{{\sin {{71}^o}30′}} = \frac{b}{{\sin {{44}^o}30′}} = \frac{c}{{\sin {{64}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}b = \sin {44^o}30′.\frac{{17,4}}{{\sin {{71}^o}30′}} \approx 12,86\\c = \sin {64^o}.\frac{{17,4}}{{\sin {{71}^o}30′}} \approx 16,5\end{array} \right.\end{array}\)

b) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}}\\ \Rightarrow \cos A = \frac{{{6^2} + {8^2} – {{10}^2}}}{{2.6.8}} = 0;\cos B = \frac{{{{10}^2} + {8^2} – {6^2}}}{{2.10.8}} = \frac{4}{5}\\ \Rightarrow \widehat A = {90^o},\widehat B = {36^o}52’11,63”\\ \Rightarrow \widehat C = {53^o}7’48,37”\end{array}\)

Câu 2:  Hai máy bay cùng cất cánh từ một sân bay nhưng bay theo hai hướng khác nhau. Một chiếc di chuyển với tốc độ 450 km/h theo hướng tây và chiếc còn lại di chuyển theo hướng lệch so với hướng bắc \({25^o}\) về phía tây với tốc độ 630 km/h (Hình sau). Sau 90 phút, hai máy bay cách nhau bao nhiêu kilomet? Giả sử chúng đang ở cùng độ cao.

Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời 3

Hướng dẫn giải

Ta có: \(\widehat {BOA} = {90^o} – {25^o} = {75^o}.\)

Sau 90 phút = 1,5 giờ:

Máy bay thứ nhất đi được quãng đường (OA) là: \(450.1,5 = 675\;(km)\)

Máy bay thứ hai đi được quãng đường (OB) là: \(630.1,5 = 945\;(km)\)

Áp dụng định lí cosin trong tam giác OAB, ta có:

\(\begin{array}{l}A{B^2} = O{A^2} + O{B^2} – 2OA.OB\cos O\\ \Leftrightarrow A{B^2} = {675^2} + {945^2} – 2.675.945\cos {75^o}\\ \Rightarrow AB \approx 1009,2\end{array}\)

Vậy sau 90 phút, hai máy bay cách nhau khoảng 1009,2 km.

===========
Chuyên mục: Chương 4: Hệ thức lượng trong tam giác

Bài liên quan:

  1. Luyện tập Ôn cuối chương 4 – Toán 10 Chân trời
  2. Lý thuyết Bài tập cuối chương 4 – Chân trời
  3. Lý thuyết Bài 2: Định lí cosin và định lí sin – Chân trời
  4. Lý thuyết Bài 1: Giá trị lượng giác của một góc từ 0˚ đến 180˚ – Chân trời
  5. Trả lời câu hỏi trong bài tập cuối chương IV trang 78 – Chân trời
  6. Trả lời câu hỏi trong bài 3 Trả lời câu hỏi trong tam giác và ứng dụng thực tế – Chân trời
  7. Trả lời câu hỏi trong bài 2 Định lí côsin và định lí sin – Chân trời
  8. Trả lời câu hỏi trong bài 1 Giá trị lượng giác của một góc từ 0 độ đến 180 độ – Chân trời

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Chân trời sáng tạo

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.