• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 12 / Khối đa diện là gì?

Khối đa diện là gì?

Ngày 15/11/2018 Thuộc chủ đề:Toán lớp 12 Tag với:Khối đa diện

Khối đa diện là gì?

Khối đa diện là gì? (đọc thêm)

1. Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai điều kiện:

a) Hai đa giác phân biệt chỉ có thể hoặc không giao nhau, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung.

b) Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác.
Mỗi đa giác như thế được gọi là một mặt của hình đa diện (H). Các đỉnh, cạnh của các đa giác ấy theo thứ tự gọi là các đỉnh, cạnh của hình đa diện (H).

Khối đa diện là gì?

2. Phần không gian được giới hạn bới một hình đa diện (H) được gọi là khối đa diện (H).

3. Mỗi đa diện (H) chia các điểm còn lại của không gian thành hai miền không giao nhau: miền trong và miền ngoài của (H). Trong đó chỉ có duy nhất miền ngoài là chứa hoàn toàn một đường thẳng nào đấy.
Các điểm thuộc miền trong là các điểm trong, các điểm thuộc miền ngoài là các điểm ngoài của (H).
Khối đa diện (H) là hợp của hình đa diện (H) và miền trong của nó.

Khối đa diện là gì?

4. Phép dời hình và sự bằng nhau giữa các khối đa diện.
a) Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M′ xác định duy nhất được gọi là một phép biến hình trong không gian.

b) Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý.

c) Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình.

d) Phép dời hình biến một đa diện thành một đa diện, biến các đỉnh, cạnh, mặt của đa diện này thành đỉnh, cạnh, mặt tương ứng của đa diện kia.

Khối đa diện là gì?

5. Nếu khối đa diện (H) là hợp của hai khối đa diện (H1),(H2) sao cho (H1) và (H2) không có điểm trong chung thì ta nói có thể chia được khối đa diện (H) thành hai khối đa diện (H1) và (H2), hay có thể lắp ghép được hai khối đa diện (H1) và (H2) với nhau để được khối đa diện (H)thành các khối tứ diện.

Bài liên quan:

  1. Phân chia và lắp ghép khối đa diện
  2. Ví dụ minh họa khái niệm khối đa diện
  3. Trắc nghiệm Khái niệm về khối đa diện
  4. Lý thuyết Khái niệm về khối đa diện

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • HƯỚNG DẪN ÔN THI THPTQG MÔN TOÁN – CHƯƠNG-TRÌNH-MỚI 2025
  • Phát triển các câu tương tự Đề TOÁN THAM KHẢO 2024
  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.