• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Chân trời / Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời

Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời

Ngày 12/08/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Chân trời Tag với:Học Toán 10 chương 6 - CTST

Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời
============

1.1. Số trung bình

Cho mẫu số liệu \({x_1},{x_2},{x_3},…,{x_n}\)

+) Số trung bình (hay TB cộng) của mẫu số liệu kí hiệu là \(\overline x \), được tính bằng công thức: \(\overline x  = \frac{{{x_1} + {x_2} + {x_3} + … + {x_n}}}{n}\)

+) Mẫu số liệu cho dưới dạng bảng tần số thì:

\(\overline x  = \frac{{{n_1}{x_1} + {n_2}{x_2} + {n_3}{x_3} + … + {n_k}{x_k}}}{n}\)

Với \({n_i}\) là tần số của giá trị \({x_i}\) và \(n = {n_1} + {n_2} + … + {n_k}\)

+) Ý nghĩa: Số trung bình dùng để đại diện cho các số liệu của mẫu. Nó là một số đo xu thế trung tâm của mẫu đó.

Ví dụ: Một cửa hàng bán xe đạp thông kê sô xe bán được hằng tháng trong năm 2021 ở bảng sau:

Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu - Chân trời 1

a) Hãy tỉnh sô xe trung bình cửa hảng bản được môi tháng trong năm 2021

b) Hãy so sánh hiệu quả kinh doanh trong quý III của cửa hàng với 6 tháng đầu năm 2021

Giải

a) Sô xe trung bình cửa hàng bán được mỗi tháng trong năm 2021 là

\(\frac{1}{{12}}\left( {10 + 8 + 7 + 5 + 8 + 22 + 28 + 25 + 20 + 10 + 9 + 7} \right) = 13,25\) (xe).

b) Số xe trung bình bán được trong 6 tháng đầu năm là:

\(\frac{1}{6}\left( {10 + 8 + 7 + 5 + 8 + 22} \right) = 10\) (xe)

Số xe trung bình bán được trong quý III của năm là

\(\frac{1}{3}\left( {28 + 25 + 20} \right) = \frac{{73}}{3} \approx 24,33\) (xe)

Như vậy hiệu quả kinh doanh của cửa hàng trong quý III cao hơn trong 6 tháng đầu năm.

1.2. Trung vị và tứ phân vị

a) Trung vị

+) Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác), ta dùng trung vị để đo xu thế trung tâm.

+) Tìm trung vị \({M_e}\):

Bước 1: Sắp xếp các giá trị theo thứ tự không giảm \({X_1},{X_2},..,{X_n}\)

Bước 2: Cỡ mẫu = n.

+ Nếu n lẻ (\(n = 2k – 1\)) thì \({M_e} = {X_k}\)

+ Nếu n chẵn (\(n = 2k\)) thì \({M_e} = \frac{1}{2}({X_k} + {X_{k + 1}})\)

+) Ý nghĩa: Trung vị là giá trị ở vị trí chính giữa của mẫu số liệu đã sắp xếp theo thứ tự không giảm. Trung vị không bị ảnh hưởng bởi giá trị bất thường như số trung bình.

Ví dụ

a) Tính các trung vị của số sách các bạn ở Tổ 1 và số sách các bạn ở Tổ 2 đã đọc trong HĐ2.

b) Sử đụng trung vị, hãy so sánh xem các bạn ở tô nào đọc nhiều sách ở thư viện hơn.

Giải

a) Sắp xếp sô sách mỗi bạn Tô 1 đã đọc theo thứ tự không giảm, ta được đấy:

1; 1; 1; 2; 2; 2; 3; 3; 25.

Vì cỡ mẫu bằng 9 nên trung vị của Tổ 1 là số liệu thứ 5 của dãy trên, tức là \({M_e} = 2\)

Sắp xếp số sách mỗi bạn Tổ 2 đã đọc theo thứ tự không giảm. ta được đấy:

3; 3; 4; 4; 4; 4; 5; 5

Vì cỡ mẫu bằng 8 nên trung vị của Tổ 2 là trung bình cộng của sô liệu thứ 4 và thứ 5 của dãy trên, tức là \({M_e} = \frac{1}{2}\left( {4 + 4} \right) = 4\)

b) Nếu so sánh theo trung vị thì các bạn Tổ 2 đọc nhiều sách ở thư viên hơn các bạn Tổ 1.

b) Tứ phân vị

Tứ phân vị gồm 3 giá trị \({Q_1},{Q_2},{Q_3}\), nó chia mẫu số liệu đã sắp xếp theo thứ tự từ nhỏ đến lớn thành 4 phần, mỗi phần đều chứa 25

Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu - Chân trời 2

+) Các bước tìm tứ phân vị:

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm.

Bước 2: Tìm trung vị, chính là \({Q_2}\)

Bước 3: \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\)(không bao gồm \({Q_2}\) nếu n lẻ).

Bước 4: \({Q_3}\)là trung vị của nửa số liệu bên phải \({Q_2}\)(không bao gồm \({Q_2}\) nếu n lẻ).

Chú ý

\({Q_1}\) còn được gọi là tứ phân vị thứ nhất hoặc tứ phân vị dưới, đại diện cho nửa mẫu số liệu phía dưới.

 \({Q_3}\) còn được gọi là tứ phân vị thứ ba hoặc tứ phân vị trên, đại diện cho nửa mẫu số liệu phía trên.

1.3. Mốt

Mốt của mẫu số liệu là giá trị xuất hiện nhiều nhất trong mẫu.

Ý nghĩa: Dùng mốt để đo xu thế trung tâm của mẫu số liệu khi mẫu có nhiều giá trị trùng nhau.

Nhận xét

– Mốt có thể không là duy nhất. Một mẫu có thể có nhiều mốt

– Khi các giá trị trong mẫu xuất hiện với tần số như nhau thì mẫu số liệu đó không có mốt.

Ví dụ: Số vụ va chạm giao thông mỗi ngày tại một ngã tư được ghi lại trong bảng tần số sau:

Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu - Chân trời 3

Tìm mốt của mẫu sô liệu trên.

Giải

Số ngày có 1 vụ va chạm là 17, lớn hơn số ngày có 0, 2, 3, 4 vụ va chạm. Do đó mẫu số liệu trên có \({M_0} = 1\). 

Câu 1:  Cân nặng của 20 vận động viên môn vật của một câu lạc bộ được ghi lại ở bảng sau:

50

56

57

62

58

52

66

61

54

61

64

69

52

65

58

68

67

56

59

54

Để thuận tiện cho việc luyện tập, ban huấn luyện muốn xếp 20 vận động viên trên thành 4 nhóm, mỗi nhóm gồm 25

Hướng dẫn giải

Sắp xếp các cân nặng theo thứ tự không giảm, ta được dãy:

50; 52; 52; 54; 54; 56; 56; 57; 58; 58; 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.

+) Vì cỡ mẫu \(n = 20\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}\left( {58 + 59} \right) = 58,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 50; 52; 52; 54; 54; 56; 56; 57; 58; 58.

Do đó \({Q_1} = \frac{1}{2}(54 + 56) = 55\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.

Do đó \({Q_3} = \frac{1}{2}(64 + 65) = 64,5\)

Vậy 3 ngưỡng cân nặng để phân nhóm là: 55kg; 58,5 kg; 64,5 kg. 

Câu 2:  Hãy tìm tứ phân vị của các mẫu số liệu sau:

a) 10; 13; 15; 2; 10; 19; 2; 5; 7

b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15

Hướng dẫn giải

a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

2; 2; 5; 7; 10; 10; 13; 15; 19

+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.

Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.

Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)

b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

1; 2; 5; 5; 9; 10; 10; 15; 15; 19

+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.

Do đó \({Q_1} = 5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.

Do đó \({Q_3} = 15\)

===========
Chuyên mục: Chương 6: Thống kê

Bài liên quan:

  1. Lý thuyết Bài tập cuối chương 6 – Chân trời
  2. Lý thuyết Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu – Chân trời
  3. Lý thuyết Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ – Chân trời
  4. Lý thuyết Bài 1: Số gần đúng và sai số – Chân trời
  5. Trả lời câu hỏi trong bài tập cuối chương VI trang 126 – Chân trời
  6. Trả lời câu hỏi trong bài 4 Các số đặc trưng đo mức độ phân tán của mẫu số liệu – Chân trời
  7. Trả lời câu hỏi trong bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời
  8. Trả lời câu hỏi trong bài 2 Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ – Chân trời
  9. Trả lời câu hỏi trong bài 1 Số gần đúng và sai số – Chân trời

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Chân trời sáng tạo

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.