• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Chân trời / Trả lời câu hỏi trong bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời

Trả lời câu hỏi trong bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời

Ngày 09/07/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Chân trời Tag với:Học Toán 10 chương 6 - CTST

Trả lời câu hỏi trong bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời
============

1. SỐ TRUNG BÌNH

Khám phá 1:  Điểm số bài kiểm tra môn Toán của các bạn trong Tổ 1 là 6; 10; 6; 8; 7; 10, còn của các bạn Tổ 2 là 10; 6; 9; 9; 8; 9. Theo em, tổ nào có kết quả kiểm tra tốt hơn tại sao?

Hướng dẫn giải:

  • Điểm trung bình của Tổ 1 là: $\frac{1}{6}$(6 + 10 + 6 + 8 + 7 + 10) $\approx$ 7,83
  • Điểm trung bình của Tổ 2 là: $\frac{1}{6}$(10 + 6 + 9 + 9 + 8 + 9) = 8,5

=> Vậy kết quả kiểm tra của Tổ 2 tốt hơn.

Vận dụng 1:  Thời gian chạy 100 mét (đơn vị: giây) của các bạn học sinh ở hai nhóm A và B được ghi lại ở bảng:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Nhóm nào có thành tích chạy tốt hơn?

Hướng dẫn giải:

  • Số giây trung bình nhóm A chạy được là: $\frac{1}{8}$(12,2 + 13,5 + 12,7 + 13,1 + 12,5 + 12,9 + 13,2 + 12,8) = 12,8625 (s)
  • Số giây trung bình nhóm B chạy được là: $\frac{1}{5}$(12,1 + 13,4 + 13,2 + 12,9 + 13,7) = 13,06 (s)

=> Vậy nhóm A có thành tích chạy tốt hơn.

Vận dụng 2:  Số bàn thắng mà một đội bóng ghi được ở mỗi trận đấu trong một mùa giải được thống kê lại ở bảng sau:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Hãy xác định số bàn thắng trung bình đội đó ghi được trong một trận đấu của mùa giải.

Hướng dẫn giải:

Số bàn thắng trung bình đội đó ghi được trong một trận đấu của mùa giải là: $\frac{0+1+2+3+4+6}{5+10+5+3+2+1}$ $\approx$ 0,62 (bàn thắng).

2. TRUNG VỊ VÀ TỨ PHÂN VỊ

Khám phá 2:  Bảng sau thống kê số sách mỗi bạn học sinh Tổ 1 và Tổ 2 đã đọc ở thư viện trường trong một tháng:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

a. Trung bình mỗi bạn Tổ 1 và mỗi bạn Tổ 2 đọc bao nhiêu quyển sách ở thư viện trường trong tháng đó.

b. Em hãy thảo luận với các bạn trong nhóm xem tổ nào chăm đọc sách ở thư viện hơn.

Hướng dẫn giải:

a. Trung bình mỗi bạn Tổ 1 đọc được: $\frac{3+1+2+1+2+2+3+25+1}{9}$ $\approx$ 4,44(quyển sách)

Trung bình mỗi bạn Tổ 2 đọc được: $\frac{4+5+4+3+3+4+5+4}{8}$ = 4

b. Các bạn ở Tổ 2 đọc nhiều sách hơn các bạn ở Tổ 1.

Thực hành 1:  Hãy tìm trung vị của các số liệu ở Vận dụng 1 và Vận dụng 2.

Hướng dẫn giải:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Sắp xếp số giây các bạn nhóm A chạy được theo thứ tự không giảm, ta được dãy: 

12,2; 12,5; 12,7; 12,8; 12,9; 13,1; 13,2; 13,5

Vì cỡ mẫu bằng 8 nên trung vị của nhóm A là trung bình cộng của số liệu thứ 4 và thứ 5 của dãy trên. Vậy $M_{e}$ = $\frac{1}{2}$(12,8 + 12,9) = 12,85

Sắp xếp số giây các bạn nhóm A chạy được theo thứ tự không giảm, ta được dãy: 12,1; 12,9; 13,2; 13,4; 13,7.

Vì cỡ mẫu bằng 5 nên trung vị của nhóm B là số liệu thứ 3 của dãy trên. Vậy $M_{e}$ = 13,2.

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Cỡ mẫu bằng 26. Khi sắp xếp số bàn thắng theo thứ tự không giảm thì số liệu thứ 13 và 14 là 1; 1. Vậy $M_{e}$ = $\frac{1}{2}$(1+1) = 1.

Khám phá 3:  Cân nặng của 20 vận động viên môn vật của một câu lạc bộ được ghi lại ở bảng sau:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Để thuận tiện cho việc luyện tập, ban huấn luyện muốn xếp 20 vận động viên trên thành 4 nhóm, mỗi nhóm gồm 25

Hướng dẫn giải:

Sắp xếp số cân nặng theo theo thứ tự không giảm, ta được dãy:

50; 52; 52; 54; 54; 56; 56; 57; 58; 58; 59; 61; 61; 62; 64; 65; 66; 67; 68; 69

Vì cỡ mẫu là n = 20, là số chẵn, nên giá trị tứ phân vị thứ hai là $Q_{2}$ = $\frac{1}{2}$(58 + 59) = 58,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 50; 52; 52; 54; 54; 56; 56; 57; 58; 58. Do đó, $Q_{1}$ = $\frac{1}{2}$(54 + 56) = 55.

Tứ phân vị thứ ba là trung vị của mẫu: 59; 61; 61; 62; 64; 65; 66; 67; 68; 69. Do đó, $Q_{3}$ = $\frac{1}{2}$(64 + 65) = 64,5

Vậy các ngưỡng cân nặng để huấn luyện viên phân nhóm vận động viên là: 55; 58,5 và 64,5.

Thực hành 2:  Hãy tìm tứ phân vị của các mẫu số liệu sau:

a. 10; 13; 15; 2; 10; 19; 2; 5; 7.

b. 15; 19; 10; 5; 9; 10; 1; 2; 5; 15

Hướng dẫn giải:

a. Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được: 2; 2; 5; 7; 10; 10; 13; 15; 19.

Vì cỡ mẫu là n = 9, là số lẻ, nên giá trị tứ vị phân thứ hai là $Q_{2}$ = 10.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7. Do đó $Q_{1}$ = $\frac{1}{2}$(2 + 5) = 3,5.

Tứ phân vị thứ ba là trung vị của mẫu: 10; 13; 15; 19. Do đó $Q_{3}$ = $\frac{1}{2}$(13 + 15) = 14

b. Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được: 1; 2; 5; 5; 9; 10; 10; 15; 15; 19.

Vì cỡ mẫu là n = 10, là số chẵn, nên giá trị tứ vị phân thứ hai là $Q_{2}$ = $\frac{1}{2}$(9 + 10) = 9,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9. Do đó $Q_{1}$ = 5.

Tứ phân vị thứ ba là trung vị của mẫu: 10; 10; 15; 15; 19. Do đó $Q_{3} = 15.

3. MỐT

Khám phá 4:  Một cửa hàng kinh doanh hoa thống kê số hoa hồng bán được trong ngày 14 tháng 2 theo loại hoa và thu được bảng tần số sau:

Giải bài 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Cửa hàng nên nhập loại hoa nào nhiều nhất để bán trong ngày 14 tháng 2 năm tiếp theo? Tại sao?

Hướng dẫn giải:

Từ bảng ta thấy, số lượng hoa hồng nhung bán được nhiều nhất (230 bông). Do đó, cửa hàng nền nhập hoa hồng nhung để bán trong ngày 14 tháng 2 năm tiếp theo.

Thực hành 3:  Hãy tìm mốt của số liệu điểm kiểm tra của các bạn Tổ 1 trong Khám phá 1.

Hướng dẫn giải:

Mẫu số liệu điểm kiểm tra của các bạn Tổ 1 có $M_{o}$ = 6; 10.

===========
Chuyên mục: Học Toán lớp 10 – Chân trời

Bài liên quan:

  1. Lý thuyết Bài tập cuối chương 6 – Chân trời
  2. Lý thuyết Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu – Chân trời
  3. Lý thuyết Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu – Chân trời
  4. Lý thuyết Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ – Chân trời
  5. Lý thuyết Bài 1: Số gần đúng và sai số – Chân trời
  6. Trả lời câu hỏi trong bài tập cuối chương VI trang 126 – Chân trời
  7. Trả lời câu hỏi trong bài 4 Các số đặc trưng đo mức độ phân tán của mẫu số liệu – Chân trời
  8. Trả lời câu hỏi trong bài 2 Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ – Chân trời
  9. Trả lời câu hỏi trong bài 1 Số gần đúng và sai số – Chân trời

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Chân trời sáng tạo

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.