• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Kết nối / Lý thuyết Bài 19: Phương trình đường thẳng – Kết nối

Lý thuyết Bài 19: Phương trình đường thẳng – Kết nối

Ngày 08/07/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Kết nối Tag với:Học Toán 10 chương 7 - KNTT

Lý thuyết Bài 19: Phương trình đường thẳng
=============

Tóm tắt lý thuyết

1.1. Phương trình tổng quát của đường thẳng

Vectơ \(\overrightarrow n \) khác \(\overrightarrow 0 \)được gọi là vectơ pháp tuyến của đường thẳng \(\Delta \) nếu giá của nó vuông góc với \(\Delta \).

Nhận xét

+ Nếu \(\overrightarrow n \) là vectơ pháp tuyến của đường thẳng \(\Delta \) thi k\(\overrightarrow n \) (\(k \ne 0\)) cũng là vectơ pháp tuyến của \(\Delta \).

+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ pháp tuyến của nó.

Ví dụ: Trong mặt phẳng toạ độ, cho tam giác có ba đỉnh là A(3, 1), B(4; 0), C(5; 3). Hãy chỉ ra một vectơ pháp tuyến của đường trung trực của đoạn thẳng AB và một vectơ pháp tuyến của đường cao kẻ từ A của tam giác ABC.

Giải

Đường trung trực của đoạn thẳng AB vuông góc với AB nên có vectơ pháp tuyến \(\overrightarrow {AB} (1; – 1)\)

Đường cao kẻ từ A của tam giác ABC vuông góc với BC nên có vectơ pháp tuyến \(\overrightarrow {BC} (1; 3)\)

Trong mặt phẳng toạ độ, mọi đường thẳng đều có phương trình tổng quát dạng ax + by + c =0, với a và b không đồng thời bằng 0. Ngược lại, mỗi phương trình dạng ax + by + c =0, với a và b không đồng thời bằng 0, đều là phương trình của một đường thẳng, nhận \(\overrightarrow n \left( {a;b} \right)\) là một vectơ pháp tuyến.

Ví dụ 2: Trong mặt phẳng toạ độ, lập phương trình tổng quát của đường thẳng \(\Delta \) đi qua điểm A(2: 1) và nhận \(\overrightarrow n \left( {3;4} \right)\) là một vectơ pháp tuyến.

Giải

Đường thẳng \(\Delta \) có phương trình là 3(x – 2)+ 4(y – 1) = 0 hay 3x + 4y – 10 = 0

Nhận xét:  Trong mặt phẳng toạ độ, cho đường thẳng \(\Delta \): ax + by + c = 0

+ Nếu b = 0 thì phương trình \(\Delta \) có thể đưa về dạng x = m (với \(m =  – \frac{c}{a}\)) và \(\Delta \) vuông góc với Ox.

+ Nếu \(b \ne 0\) thì phương trình \(\Delta \) có thể đưa về dạng y =  nx + p (với \(n =  – \frac{a}{b},p =  – \frac{c}{b}\))

1.2. Phương trình tham số của đường thẳng

Vectơ \(\overrightarrow u \) khác \(\overrightarrow 0 \) được goi là vectơ chỉ phương của đường thẳng \(\Delta \) nếu giá của nó song song hoặc trùng với \(\Delta \).

Nhận xét

+ Nếu \(\overrightarrow u \) là vectơ chỉ phương của đường thẳng \(\Delta \) thì k\(\overrightarrow u \) (\(k \ne 0\)) cũng là vectơ chỉ phương của \(\Delta \).

+ Đường thẳng hoàn toàn xác định nếu biết một điểm và một vectơ chỉ phương của nó.

+ Hai vectơ \(\overrightarrow n \left( {a;b} \right)\) và \(\overrightarrow u \left( {-b;a} \right)\) vuông góc với nhau nên nêu \(\overrightarrow n \) là vectơ pháp tuyến của đường thẳng \(\Delta \) thì \(\overrightarrow u \) là vectơ chỉ phương của đường thẳng đó và ngược lại.

Lý thuyết Bài 19: Phương trình đường thẳng - Kết nối 1

Ví dụ: Trong mặt phẳng toạ độ, cho A(3; 2), B(1; -4). Hãy chỉ ra hai vectơ chỉ phương của đường thẳng AB.

Giải

Đường thẳng AB nhận \(\overrightarrow {AB} \left( { – 2; – 6} \right)\) là một vectơ chỉ phương.

Lấy \(\overrightarrow u  =  – \frac{1}{2}\overrightarrow {AB}  = \left( {1;3} \right)\), khi đó \(\overrightarrow u\) cũng là một vectơ chỉ phương của đường thẳng AB

Cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {a;b} \right)\). Khi đó điểm M(x: y) thuộc đường thẳng \(\Delta \) khi và chỉ khi tổn tại số thực t sao cho \(\overrightarrow {AM}  = t\overrightarrow u \), hay

\(\left\{ \begin{array}{l}
x = {x_0} + at\\
y = {y_0} + bt
\end{array} \right.\;\;\;\;\;\;\;\;(2)\)

Hệ (2) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số).

Ví dụ:  Lập phương trình tham số của đường thẳng \(\Delta \) đi qua điểm A(2; -3) và có vectơ chỉ phương \(\overrightarrow u \left( {4; – 1} \right)\).

Giải

Phương trinh tham số của đường thẳng \(\Delta \) là \(\left\{ \begin{array}{l}
x = 2 + 4t\\
y =  – 3 – t
\end{array} \right.\)

Bài tập minh họa

Câu 1:  Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh A(-1; 5), B(2; 3), C(6; 1). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC.

Hướng dẫn giải

Đường cao kẻ từ A của tam giác ABC nhận vecto \(\overrightarrow{BC}\) làm vecto pháp tuyến.

\(\overrightarrow{BC}(4; -2)\)

Đường cao kẻ từ A của tam giác ABC có phương trình là:

4(x +1) – 2(y-5) = 0 hay 4x -2y +14 = 0.

Câu 2:  Hãy chỉ ra một vecto chỉ phương của đường thẳng  \(\Delta \): 2x – y +1 = 0

Hướng dẫn giải

\(\Delta \) có một vecto pháp tuyến là: \(\overrightarrow{n}(2; -1)\)

\(\Rightarrow\) một vecto chỉ phương là: \(\overrightarrow{u}(1; 2)\)

Câu 3:  Lập phương trình tham số của đường thẳng \(\Delta\) đi qua điểm M(-1; 2) và song song với đường thẳng d: 3x – 4y -1 = 0.

Hướng dẫn giải

Đường thẳng \(\Delta\) song song với d: 3x – 4y -1 = 0.

\(\Rightarrow\) \(\Delta\) có vecto pháp tuyển: \(\overrightarrow{n}(3; -4)\)

\(\Rightarrow\) \(\Delta \) có vecto chỉ phương: \(\overrightarrow{u}(4; 3)\)

Phương trình tham số của \(\Delta\) là:

\(\left\{\begin{matrix}x=-1+4t\\ y=2+3t\end{matrix}\right.\)

=============
– Học Toán lớp 10 – Kết nối

Bài liên quan:

  1. Trả lời câu hỏi trong bài tập cuối chương VII trang 58 – Kết nối
  2. Trả lời câu hỏi trong bài 22 Ba đường conic – Kết nối
  3. Trả lời câu hỏi trong bài 21 Đường tròn trong mặt phẳng tọa độ – Kết nối
  4. Trả lời câu hỏi trong bài 20 Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách – Kết nối
  5. Trả lời câu hỏi trong bài 19 Phương trình đường thẳng – Kết nối
  6. Lý thuyết Bài tập cuối chương 7 – Kết nối
  7. Lý thuyết Bài 22: Ba đường conic – Kết nối
  8. Lý thuyết Bài 21: Đường tròn trong mặt phẳng tọa độ – Kết nối
  9. Lý thuyết Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách – Kết nối

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Kết nối tri thức

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.