• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 9 - Cánh diều / Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Góc ở tâm. Góc nội tiếp

Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Góc ở tâm. Góc nội tiếp

Ngày 25/07/2024 Thuộc chủ đề:Giải bài tập Toán 9 - Cánh diều Tag với:Giải toán 9 tập 1 cánh diều

Giải chi tiết Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Góc ở tâm. Góc nội tiếp – SÁCH GIÁO KHOA TOÁN 9 CÁNH DIỀU – 2024

================

Giải bài tập Toán 9 Bài 4: Góc ở tâm. Góc nội tiếp

Khởi động trang 111 Toán 9 Tập 1:Bác Ngọc dự định làm khung sắt cho khuôn cửa sổ ngôi nhà có dạng đường tròn nhưHình 44. Hai thanh chắn cửa sổ gợi nên một góc có đỉnh thuộc đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Khởi động trang 111 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Góc có đặc điểm như vậy trong toán học gọi là góc gì?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Góc có đỉnh thuộc đường tròn và hai cạnh chứa hai dây cung của đường tròn đó được gọi là góc nội tiếp.

Hoạt động 1 trang 111 Toán 9 Tập 1:Cho đường tròn (O). Hãy vẽ góc xOy có đỉnh là tâm O của đường tròn đó.

Lời giải:

Hình vẽ góc xOy có đỉnh là tâm O của đường tròn (O) như sau:

Hoạt động 1 trang 111 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Luyện tập 1 trang 111 Toán 9 Tập 1:TrongHình 47, coi mỗi khung đồng hồ là một đường tròn, kim giờ, kim phút là các tia. Số đo góc ở tâm trong mỗi hình 47a, 47b, 47c, 47d là bao nhiêu?

Luyện tập 1 trang 111 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

a) Số đo góc ở tâm là 60°.

b) Số đo góc ở tâm là 90°.

c) Số đo góc ở tâm là 150°.

d) Số đo góc ở tâm là 180°.

Hoạt động 2 trang 112 Toán 9 Tập 1:Quan sát góc ở tâm AOB (khác góc bẹt) ởHình 48, cho biết trong hai phần đường tròn được tô màu xanh và màu đỏ, phần nào nằm bên trong, phần nào nằm bên ngoài góc AOB.

Hoạt động 2 trang 112 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Phần đường tròn được tô màu xanh nằm bên trong góc AOB.

Phần đường tròn được tô màu đỏ nằm bên ngoài góc AOB.

Luyện tập 2 trang 114 Toán 9 Tập 1:TrongHình 53, tìm số đo của các góc ở tâmBOC^;DOA^.

Luyện tập 2 trang 114 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

⦁ Do số học sinh chọn môn Bóng bàn chiếm 15

Vì số đo của cung nhỏ BC bằng số đo của góc ở tâm BOC chắn cung đó nênBOC^=54°.

⦁ Do số học sinh chọn môn Bóng đá chiếm 40

Vì số đo của cung nhỏ DA bằng số đo của góc ở tâm DOA chắn cung đó nênDOA^=144°.

Hoạt động 3 trang 115 Toán 9 Tập 1:TrongHình 55, đỉnh của góc AIB có thuộc đường tròn hay không? Hai cạnh của góc chứa hai dây cung nào của đường tròn?

Hoạt động 3 trang 115 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

⦁ Đỉnh của góc AIB là điểm I, điểm I có thuộc đường tròn.

⦁ Hai cạnh của góc AIB chứa hai dây cung IA, IB của đường tròn.

Luyện tập 3 trang 115 Toán 9 Tập 1:Hãy vẽ một đường tròn và hai góc nội tiếp trong đường tròn đó.

Lời giải:

Luyện tập 3 trang 115 Toán 9 Tập 1 Cánh diều | Giải Toán 9

ABC^;DEF^là hai góc nội tiếp đường tròn (O).

Hoạt động 4 trang 115 Toán 9 Tập 1:Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc đó (Hình 57).

Hoạt động 4 trang 115 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Các cặp gócOAI^vàOIA^;OBI^vàOIB^có bằng nhau hay không?

b) Tính các tổngAOI^+2OIA^,BOI^+2OIB^.

c) Tính các tổngAOI^+AOK^,BOI^+BOK^.

d) So sánhAOK^và2OIA^,BOK^và2OIB^,AOB^và2AIB^.

Lời giải:

a) Xét ∆OAI có OA = OI nên ∆OAI cân tại O, suy raOAI^=OIA^.

Xét ∆OBI có OB = OI nên ∆OBI cân tại O, suy raOBI^=OIB^.

b) Xét ∆OAI cóAOI^+OIA^+OAI^=180°(định lí tổng các góc của một tam giác).

Do đóAOI^+2OIA^=180°.

Xét ∆OBI cóBOI^+OIB^+OBI^=180°(định lí tổng các góc của một tam giác).

Do đóBOI^+2OIB^=180°.

c)AOI^+AOK^=180°,BOI^+BOK^=180°(các cặp góc kề bù).

d) Ta cóAOI^+2OIA^=180°(theo câu b) vàAOI^+AOK^=180°(theo câu c)

Suy raAOK^=2OIA^.

Ta cóBOI^+2OIB^=180°(theo câu b) vàBOI^+BOK^=180°(theo câu c)

Suy raBOK^=2OIB^.

Ta có:AOK^=2OIA^vàBOK^=2OIB^

Suy raAOK^+BOK^=2OIA^+2OIB^=2OIA^+OIB^

Do đóAOB^=2AIB^.

Luyện tập 4 trang 116 Toán 9 Tập 1:Cho đường tròn (O; R) và dây cung AB = R. Điểm C thuộc cung lớn AB, C khác A và B. Tính số đo góc ACB.

Lời giải:

Luyện tập 4 trang 116 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆AOB có: OA = OB = AB = R nên ∆AOB là tam giác đều, do đóAOB^=60°.

MàAOB^là góc ở tâm vàACB^là góc nội tiếp cùng chắn cung AB của đường tròn (O). Do đóACB^=12⋅AOB^=12⋅60°=30°.

VậyACB^=30°.

Hoạt động 5 trang 116 Toán 9 Tập 1:Quan sátHình 60và nêu mối liên hệ giữa:

Hoạt động 5 trang 116 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a)AIB^vàsđAmB⏜;

b)AKB^vàsđAmB⏜;

c)AIB^vàAKB^.

Lời giải:

a) Ta cóAIB^vàsđAmB⏜lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AmB của đường tròn (O) nênAIB^=12sđAmB⏜.

b) Ta cóAKB^vàsđAmB⏜lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AmB của đường tròn (O) nênAKB^=12sđAmB⏜.

c) Ta có:AIB^=12sđAmB⏜(theo câu a) vàAKB^=12sđAmB⏜(theo câu b)

Do đóAIB^=AKB^.

Luyện tập 5 trang 117 Toán 9 Tập 1:TrongHình 61, gọi I là giao điểm của AD và BC. Chứng minh IA.ID = IB.IC.

Luyện tập 5 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Luyện tập 5 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét đường tròn chứa cung AB ta có:ACB^,ADB^là hai góc nội tiếp cùng chắn cung AB nênACB^=ADB^.

Xét ∆AIC và ∆BID có:

ACI^=BDI^(doACB^=BDA^);

AIC^=BID^(hai góc đối đỉnh).

Do đó ∆AIC ᔕ ∆BID (g.g).

Suy raIAIB=ICID(tỉ số các cạnh tương ứng) nên IA.ID = IB.IC.

Bài tập

Bài 1 trang 117 Toán 9 Tập 1:Quan sátHình 62,hãy cho biết:

a) 6 góc ở tâm có hai cạnh lần lượt chứa hai điểm trong bốn điểm A, B, C, D;

b) 4 góc nội tiếp có hai cạnh lần lượt chứa ba điểm trong bốn điểm A, B, C, D.

Bài 1 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

a) 6 góc ở tâm có hai cạnh lần lượt chứa hai điểm trong bốn điểm A, B, C, D là các góc:AOB^,AOC^,AOD^,BOC^,BOD^,COD^.

b) 4 góc nội tiếp có hai cạnh lần lượt chứa ba điểm trong bốn điểm A, B, C, D là các góc:ABC^,ADC^,BAD^,BCD^.

Bài 2 trang 117 Toán 9 Tập 1:Cho đường tròn (O; R) và dây AB sao choAOB^=90°.Giả sử M, N lần lượt là các điểm thuộc cung lớn AB và cung nhỏ AB (M, N khác A và B).

a) Tính độ dài đoạn thẳng AB theo R.

b) Tính số đo các góc ANB và AMB.

Lời giải:

Bài 2 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Xét đường tròn (O: R) có A, B thuộc đường tròn nên OA = OB = R.

Xét ∆AOB vuông tại O, theo định lí Pythagore, ta có:

AB2= OA2+ OB2= R2+ R2= 2R2.

Do đó: AB =2R2=R2.

b) Xét đường tròn (O) cóAOB^là góc ở tâm chắn cung ANB nênsđANB⏜=AOB^=90°.

Ta có:sđAMB⏜=360°−sđANB⏜=360°−90°=270°.

VìANB^là góc nội tiếp chắn cung AMB nênANB^=12sđAMB⏜=12⋅270°=135°.

VìAMB^là góc nội tiếp chắn cung ANB nênAMB^=12sđANB⏜=12⋅90°=45°.

Bài 3 trang 117 Toán 9 Tập 1:TrongHình 63, cho biết AB = OA.

Bài 3 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Tính số đo góc AOB.

b) Tính số đo cung nhỏ AB và cung lớn AB của (O).

c) Tính số đo góc MIN.

d) Tính số đo cung nhỏ MN và cung lớn MN của (I).

e) Tính số đo góc MKN.

Lời giải:

a) Xét ∆OAB có OA = OB = AB nên ∆OAB là tam giác đều, do đóAOB^=60°.

b) Số đo cung nhỏ AB là:sđAB⏜=AOB^=60°.

Số đo cung lớn AB (cung AIB) là:sđAIB⏜=360°−sđAB⏜=60°−60°=300°.

c) Góc MIN hay chính là góc AIB là góc nội tiếp chắn cung nhỏ AB nênMIN^=12sđAB⏜=12⋅60°=30°.

d) Xét đường tròn (I) có góc MIN là góc ở tâm chắn cung nhỏ MN (cung MON) nên số đo cung nhỏ MN làsđMON⏜=MIN^=30°.

Số đo cung lớnMN (cung MKN) là:

sđMKN⏜=360°−sđMON⏜=360°−30°=330°.

e) Xét đường tròn (I) có góc MKN là góc nội tiếp chắn cung nhỏ MN nênMKN^=12sđMN⏜=12⋅30°=15°.

Bài 4 trang 117 Toán 9 Tập 1:Biểu đồ hình quạt tròn ởHình 64mô tả các thành phần của một chai nước ép hoa quả (tính theo tỉ số phần trăm). Hãy cho biết các cung tương ứng với phần biểu diễn thành phần việt quất, táo, mật ong lần lượt có số đo là bao nhiêu độ.

Bài 4 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Gọi các điểm A, B, C trên đường tròn (O) như hình vẽ.

Bài 4 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

⦁ Do thành phần việt quất chiếm 60

⦁ Do thành phần táo chiếm 30

⦁ Do thành phần mật ong chiếm 10

Bài 5 trang 117 Toán 9 Tập 1:Cho hai đường tròn (O), (I) cắt nhau tại hai điểm A, B. Kẻ các đoạn thẳng AC, AD lần lượt là các đường kính của hai đường tròn (O), (I). Chứng minh ba điểm B, C, D thẳng hàng.

Lời giải:

Bài 5 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Ta có:

⦁ABC^=90°(góc nội tiếp chắn nửa đường tròn (O)).

⦁ABD^=90°(góc nội tiếp chắn nửa đường tròn (I)).

Suy raABC^+ABD^=90°+90°=180°hayCBD^=180°.

Do đó ba điểm B, C, D thẳng hàng.

Bài 6 trang 117 Toán 9 Tập 1:Hãy sử dụng compa và thước thẳng để vẽ tam giác ABC vuông tại A và giải thích cách làm.

Lời giải:

Bài 6 trang 117 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Bước 1.Vẽ đường tròn tâm O, kẻ đường kính BC.

Bước 2.Lấy điểm A thuộc đường tròn (O) (A khác B, C). Ta được tam giác ABC vuông tại A.

Thật vậy, xét đường tròn (O) có đường kính BC, điểm A thuộc (O) nênBAC^=90°(góc nội tiếp chắn nửa đường tròn).

Vậy tam giác ABC vuông tại A.

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diềuhay, chi tiết khác:

§3. Tiếp tuyến của đường tròn

§4. Góc ở tâm. Góc nội tiếp

§5. Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên

Bài tập cuối chương 5

§1. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ

§2. Tần số. Tần số tương đối

=============
THUỘC: Giải bài tập Toán 9 – SGK CÁNH DIỀU

Bài liên quan:

  1. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 5 trang 124
  2. Giải SGK Toán 9 Bài 5 (Sách Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  3. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Tiếp tuyến của đường tròn
  4. Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Vị trí tương đối của đường thẳng và đường tròn
  5. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  6. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 4 trang 92
  7. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn
  8. Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông
  9. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Tỉ số lượng giác của góc nhọn
  10. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 3 trang 72
  11. Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  12. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số phép tính về căn bậc hai của số thực
  14. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Căn bậc hai và căn bậc ba của số thực
  15. Giải SGK Toán 9 Chủ đề 1 (Sách Cánh diều): Làm quen với bảo hiểm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải sgk Toán 9 – Cánh diều | Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.