• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 9 - Cánh diều / Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông

Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông

Ngày 25/07/2024 Thuộc chủ đề:Giải bài tập Toán 9 - Cánh diều Tag với:Giải toán 9 tập 1 cánh diều

Giải chi tiết Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số hệ thức về cạnh và góc trong tam giác vuông – SÁCH GIÁO KHOA TOÁN 9 CÁNH DIỀU – 2024

================

Giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông

Khởi động trang 82 Toán 9 Tập 1:Hình 12mô tả đường lên dốc ởHình 11, trong đó góc giữa BC và phương nằm giữa BA làABC^=15°.

Khởi động trang 82 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Cạnh góc vuông AC và cạnh huyền BC (Hình 12) có liên hệ với nhau như thế nào?

Lời giải:

Xét ∆ABC vuông tại A, ta có: sinB =ACBCdo đó AC = BC.sinB = BC.sin15°.

Hoạt động 1 trang 82 Toán 9 Tập 1:Cho tam giác ABC vuông tại A (Hình 13).

Hoạt động 1 trang 82 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Biểu diễn sinB, cosC theo AC, BC.

b) Viết công thức tính AC theo BC và sinB.

c) Viết công thức tính AC theo BC và cosC.

Lời giải:

a) Xét ∆ABC vuông tại A, ta có: sinB =ACBCvà cosB =ABBC.

b) Từ sinB =ACBC(câu a) ta có AC = BC.sinB.

c) Từ cosB =ABBC(câu a) ta có AC = BC.cosB.

Luyện tập 1 trang 83 Toán 9 Tập 1:Tính độ cao AC trongHình 12khi BC = 20 m (làm tròn kết quả đến hàng phần mười của mét).

Luyện tập 1 trang 83 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có: AC = BC.sinB = 20.sin15° ≈ 5,2 (m).

Luyện tập 2 trang 83 Toán 9 Tập 1:Cho tam giác nhọn ABC có đường cao CK. Biểu diễn CK theo AC và sinA. Từ đó, chứng minh diện tích của tam giác ABC bằng12.AB.AC.sinA.

Lời giải:

Luyện tập 2 trang 83 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ACK vuông tại K, ta có: sinA =CKACdo đó CK = AC.sinA.

Khi đó, diện tích của tam giác ABC là

12CK.AB =12.AC.sinA.AB=12.AB.AC.sinA.

Hoạt động 2 trang 84 Toán 9 Tập 1:Cho tam giác ABC vuông tại A (Hình 17).

Hoạt động 2 trang 84 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Biểu diễn tanB, cotC theo AB, AC.

b) Viết công thức tính AC theo AB và tanB.

c) Viết công thức tính AC theo AB và cotC.

Lời giải:

a) Xét ∆ABC vuông tại A, ta có: tanB =ACABvà cotC =ACAB.

b) Từ tanB =ACAB(câu a) ta có AC = AB.tanB.

c) Từ cotC =ACAB(câu a) ta có AC = AB.cotC.

Luyện tập 3 trang 84 Toán 9 Tập 1:Tính độ dài cạnh AB trongHình 17khi AC = 4 cm vàB^=34°(làm tròn kết quả đến hàng phần mười của centimét).

Luyện tập 3 trang 84 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có AB = AC.cotB = 4.cot34° ≈ 5,9 (m).

Luyện tập 4 trang 85 Toán 9 Tập 1:Tìm độ dài cạnh góc vuông AC và số đo các góc nhọn B, C của tam giác vuông ABC, biết cạnh góc vuông AB = 5 cm và cạnh huyền BC = 13 cm.

Lời giải:

Luyện tập 4 trang 85 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có:

⦁ BC2= AB2+ AC2(theo định lí Pythagore)

Suy ra AC2= BC2– AB2= 132– 52= 144.

Do đó AC = 12 (cm) (do AC > 0).

⦁ sinB =ACBC=1213suy raB^≈67°.

⦁B^+C^=90°(tổng hai góc nhọn của tam giác vuông bằng 90°)

Suy raC^=90°−B^≈90°−67°=23°.

Luyện tập 5 trang 85 Toán 9 Tập 1:Tìm số đo góc nhọn C và độ dài cạnh góc vuông AB, cạnh huyền BC của tam giác vuông ABC, biết cạnh góc vuông AC = 7 cm vàB^=55°.

Lời giải:

Luyện tập 5 trang 85 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có:

⦁B^+C^=90°(tổng hai góc nhọn của tam giác vuông bằng 90°)

Suy raC^=90°−B^=90°−55°=35°.

⦁ AB = AC.tanC = 7.tan35° ≈ 4,9 (cm).

⦁ AC = BC.sinB, suy raBC=ACsinB=7sin55°≈8,5(cm).

Luyện tập 6 trang 86 Toán 9 Tập 1:Cho hình chữ nhật ABCD thoả mãn AC = 6 cm,BAC^=47°.Tính độ dài các đoạn thẳng AB, AD.

Lời giải:

Luyện tập 6 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại B, ta có:

⦁ AB = AC.cosBAC^= 6.cos47o≈4.1 (cm).

⦁ BC = AC.sinBAC^= 6.sin47o≈4,4 (cm).

Vì ABCD là hình chữ nhật nên AD = BC ≈ 4,4 cm (tính chất hình chữ nhật).

Bài tập

Bài 1 trang 86 Toán 9 Tập 1:Tìm x, y trong mỗi hình 23a, 23b, 23c (làm tròn kết quả đến hàng phần mười của centimét).

Bài 1 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

a) Từ hình ta có:

⦁ x = 6.cos56° ≈ 3,4 (cm).

⦁ y = 6.sin56° ≈ 5,0 (cm).

b) Từ hình ta có:

⦁ x = 1,5.cot32° ≈ 2,4 (cm).

⦁ 1,5 = y.sin32°, suy ray=1,5sin32°≈2,8(cm).

c) Từ hình ta có:

⦁ 0,8 = x.cos70°, suy rax=0,8cos70°≈2,3(cm).

⦁ y = 0,8.tan70° ≈ 2,2 (cm).

Bài 2 trang 86 Toán 9 Tập 1:Cho tam giác ABC có đường cao AH = 6 cm,B^=40°,C^=35°.Tính độ dài các đoạn thẳng AB, BH, AC, BC (làm tròn kết quả đến hàng phần mười của centimét).

Lời giải:

Bài 2 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABH vuông tại H, ta có:

⦁ sinB =AHAB, suy ra AB =AHsin40o=6sin40°≈9,3 (cm).

⦁ BH = AH.cotB = 6.cot40° ≈ 7,2 (cm).

Xét ∆ACH vuông tại H, ta có:

⦁ sinC =AHACsuy ra AC =AHsin35°=6sin35°≈10,5 (cm).

⦁ CH = AH.cotC = 6.cot35° ≈ 8,6 (cm).

Khi đó, BC = BH + HC ≈ 7,2 + 8,6 = 15,8 (cm).

Bài 3 trang 86 Toán 9 Tập 1:Cho tam giác ABC vuông tại A cóB^=30°.Chứng minh AC =12BC.

Lời giải:

Bài 3 trang 86 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, ta có: AC = BC.sinB = BC.sin30o=12BC.

Vậy AC =12BC.

Bài 4 trang 87 Toán 9 Tập 1:Cho tam giác ABC vuông cân tại A. Chứng minh AB = AC =22BC.

Lời giải:

Bài 4 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Vì ∆ABC vuông cân tại A nênB^=C^=45°và AB = AC.

Ta có AB = BC.sinC = BC.22=22BC.

Mà AB = AC nên AB = AC =22BC.

Bài 5 trang 87 Toán 9 Tập 1:TrongHình 24, choO^=α, AB = m vàOAB^=OCA^=ODC^=90°.

Bài 5 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Chứng minh:

a) OA = m.cotα;

b) AC = m.cosα;

c) CD = m.cos2α.

Lời giải:

a) Xét ∆OAB vuông tại A, ta có: OA = AB.cotO = m.cotα.

b) Xét ∆OAC vuông tại C, ta có:

AC = OA.sinO = m.cotα.sinα= m.cosαsinα.sinα= mcosα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα).

c) Xét ∆OAC vuông tại C, ta có:

OC = OA.cosO = m.cotα.cosα= m.cosαsinα.cosα= m.cos2αsinα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα)

Xét ∆OCD vuông tại D, ta có:

CD = OC.sinO = m.cos2αsinα.sinα= mcos2α.

Bài 6 trang 87 Toán 9 Tập 1:Tính độ dài đường gấp khúc ABCDEGH (làm tròn kết quả đến hàng phần mười của centimét), biết các tam giác OAB, OBC, OCD, ODE, OEG, OGH là các tam giác vuông tại các đỉnh lần lượt là B, C, D, E, G, H; các góc O1, O2, O3, O4, O5, O6đều bằng 30° và OA = 2 cm (Hình 25).

Bài 6 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆OAB vuông tại B, cóO^1=30°,theo Bài 3, SGK Toám 9, Tập 1, trang 86, ta có: AB =12AO =12.2 = 1 (cm).

Ta cũng có BO = AO.cosO^1= 2.cos30o= 2.32=3(cm).

Tương tự, ta cũng có:

⦁ BC =12BO =12.3=32(cm) và CO = BO.cosO2^=3.32=32(cm).

⦁ CD =12CO =12.32=34(cm) và DO = CO.cosO3^=32.32=334(cm).

⦁ DE =12DO =12.334=338(cm) và EO = DO.cosO4^=334.32=98(cm).

⦁ EG =12EO =12.98=916(cm) và GO = EO.cosO5^=98.32=9316(cm).

⦁ GH =12GO =12.9316=9332(cm).

Vậy độ dài đường gấp khúc ABCDEGH là:

1+32+34+338+916+9332

=3232+16332+2432+12332+1832+9332=74+37332≈4,3 (cm).

Bài 7 trang 87 Toán 9 Tập 1:Hình 26minh hoạ một phần con sông có bề rộng AB = 100 m. Một chiếc thuyền đi thẳng từ vị trí B bên này bờ sông đến vị trí C bên kia bờ sông. Tính quãng đường BC (làm tròn kết quả đến hàng phần mười của mét), biếtABC^=35°.

Bài 7 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có:

cos B =ABBC, suy ra BC =ABcosB=100cos35o≈122,1 (m).

Bài 8 trang 87 Toán 9 Tập 1:Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang làCAH^=43°.Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH làBAH^=28°,điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đóABD^=BAH^=28°(so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là:

BD = AD.cotABD^= 68.cot28o≈127,9 (m).

Do tứ giác ADBH cóADB^=AHB^=DBH^=90°nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH = AH.tanCAH^≈127,9.tan43o≈119,3 (m).

Chiều cao BC của tháp truyền hình là:

BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Xem thêm các bài giải bài tập Toán lớp 9 Cánh diềuhay, chi tiết khác:

§1. Tỉ số lượng giác của góc nhọn

§2. Một số hệ thức về cạnh và góc trong tam giác vuông

§3. Ứng dụng của tỉ số lượng giác của góc nhọn

Bài tập cuối chương 4

§1. Đường tròn. Vị trí tương đối của hai đường tròn

§2. Vị trí tương đối của đường thẳng và đường tròn

=============
THUỘC: Giải bài tập Toán 9 – SGK CÁNH DIỀU

Bài liên quan:

  1. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 5 trang 124
  2. Giải SGK Toán 9 Bài 5 (Sách Cánh diều): Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên
  3. Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Góc ở tâm. Góc nội tiếp
  4. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Tiếp tuyến của đường tròn
  5. Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Vị trí tương đối của đường thẳng và đường tròn
  6. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Đường tròn. Vị trí tương đối của hai đường tròn
  7. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 4 trang 92
  8. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Ứng dụng của tỉ số lượng giác của góc nhọn
  9. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Tỉ số lượng giác của góc nhọn
  10. Giải SGK Toán 9 (Sách Cánh diều): Bài tập cuối chương 3 trang 72
  11. Giải SGK Toán 9 Bài 4 (Sách Cánh diều): Một số phép biến đổi căn thức bậc hai của biểu thức đại số
  12. Giải SGK Toán 9 Bài 3 (Sách Cánh diều): Căn thức bậc hai và căn thức bậc ba của biểu thức đại số
  13. Giải SGK Toán 9 Bài 2 (Sách Cánh diều): Một số phép tính về căn bậc hai của số thực
  14. Giải SGK Toán 9 Bài 1 (Sách Cánh diều): Căn bậc hai và căn bậc ba của số thực
  15. Giải SGK Toán 9 Chủ đề 1 (Sách Cánh diều): Làm quen với bảo hiểm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải sgk Toán 9 – Cánh diều | Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.