• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 12 - Kết nối / Giải SGK Toán 12 (Sách KNTT): Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Giải SGK Toán 12 (Sách KNTT): Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Ngày 10/06/2024 Thuộc chủ đề:Giải bài tập Toán 12 - Kết nối Tag với:GIẢI TOÁN 12 KẾT NỐI THỰC HÀNH TRẢI NGHIỆM

Giải chi tiết Giải SGK Toán 12 (Sách KNTT): Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra – SÁCH GIÁO KHOA TOÁN 12 KẾT NỐI – 2024

================

Giải bài tập Toán 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Thực hành 1 trang 91 Toán 12 Tập 1: Cho các hàm số đa thức sau:

(1) y = 3x2+3x+1;

(2) y = x3 – 6x2 + 9;

(3) y = x4 – 4x2 + 3.

a) Tìm đạo hàm cấp một và đạo hàm cấp hai của các hàm số trên.

b) Tìm tất cả các điểm cực trị của các hàm số trên.

c) Vẽ đồ thị của các hàm số trên.

Lời giải:

(1) y = 3x2+3x+1.

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(3x2+3x+1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(3x2+3x+1, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(3x2+3x+1), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = 3x2+3x+1 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(2) y = x3 – 6x2 + 9

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x3 – 6x2 + 9), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(x3 – 6x2 + 9, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(x3 – 6x2 + 9), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = x3 – 6x2 + 9 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(3) y = x4 – 4x2 + 3

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Để tính đạo hàm cấp hai ta dùng lệnh Derivative(x4 – 4x2 + 3, 2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm cực trị của hàm số, ta dùng lệnh Extremum(x4 – 4x2 + 3), kết quả sẽ được hiển thị như hình sau

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Nhập hàm số y = x4 – 4x2 + 3 vào ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số cần vẽ như hình bên dưới

Thực hành 1 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Thực hành 2 trang 91 Toán 12 Tập 1: Cho các hàm số phân thức hữu tỉ sau:

(1) y = xx+2;

(2) y = 2x−1x+1;

(3) y = x2−2x−8x−1;

(4) y = 5x+1+32x−3.

a) Tìm đạo hàm cấp một của các hàm số trên.

b) Tìm các đường tiệm cận của đồ thị các hàm số trên.

c) Vẽ đồ thị của các hàm số trên.

Lời giải:

(1) y = xx+2

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(xx+2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(xx+2), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = xx+2 bằng cách nhập câu lệnh Asymptote(xx+2).

Bước 2: Vẽ đồ thị hàm số y = xx+2 bằng cách nhập hàm số y = xx+2 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(2) y = 2x−1x+1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(2x−1x+1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(2x−1x+1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 2x−1x+1 bằng cách nhập câu lệnh Asymptote(2x−1x+1).

Bước 2: Vẽ đồ thị hàm số y = 2x−1x+1bằng cách nhập hàm số y = 2x−1x+1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(3) y = x2−2x−8x−1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x2−2x−8x−1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(x2−2x−8x−1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = x2−2x−8x−1 bằng cách nhập câu lệnh Asymptote(x2−2x−8x−1).

Bước 2: Vẽ đồ thị hàm số y = x2−2x−8x−1 bằng cách nhập hàm số y = x2−2x−8x−1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(4) y = 5x+1+32x−3

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(5x+1+32x−3), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(5x+1+32x−3), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 5x+1+32x−3 bằng cách nhập câu lệnh Asymptote(5x+1+32x−3).

Bước 2: Vẽ đồ thị hàm số y = 5x+1+32x−3 bằng cách nhập hàm số y = 5x+1+32x−3 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Thực hành 3 trang 91 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4];

b) y = −3x4+4x2+2 trên đoạn [−1; 1];

c) y = x+5x trên đoạn [1; 10];

d) y = sin2x – x trên đoạn −π2;π2.

Lời giải:

a) Để tìm giá trị lớn nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Max(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 40.

Để tìm giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−4; 4] ta dùng lệnh Min(x3 – 3x2 – 9x + 35, −4, 4), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 8.

b) Để tìm giá trị lớn nhất của hàm số y = −3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Max(−3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 2,75.

Để tìm giá trị nhỏ nhất của hàm số y = −3x4+4x2+2 trên đoạn [−1; 1] ta dùng lệnh Min(−3x4+4x2+2, −1, 1), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 1,41.

c) Để tìm giá trị lớn nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Max(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 10,22.

Để tìm giá trị nhỏ nhất của hàm số y = x+5x trên đoạn [1; 10] ta dùng lệnh Min(x+5x, 1, 10), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là 2,99.

d) Để tìm giá trị lớn nhất của hàm số y = sin2x – x trên đoạn −π2;π2 ta dùng lệnh Max(sin2x – x, −π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị lớn nhất của hàm số là 0,34.

Để tìm giá trị nhỏ nhất của hàm số y = sin2x – x trên đoạn −π2;π2 ta dùng lệnh Min( sin2x – x, −π2,π2), kết quả thể hiện ở hình vẽ sau

Thực hành 3 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Vậy giá trị nhỏ nhất của hàm số là −0,34.

=============
THUỘC: Giải bài tập Toán 12 – SGK KẾT NỐI

Bài liên quan:

  1. Giải SGK Toán 12 (Sách KNTT): Vẽ đồ hoạ 3D với phần mềm GeoGebra
  2. Giải SGK Toán 12 (Sách KNTT): Tính nguyên hàm và tích phân với phần mềm GeoGebra. Tính gần đúng tích phân bằng phương pháp hình
  3. Giải SGK Toán 12 (Sách KNTT): Độ dài gang tay (gang tay của bạn dài bao nhiêu?)
  4. Giải SGK Toán 12 (Sách KNTT): Vẽ vectơ tổng của ba vectơ trong không gian bằng phần mêm GeoGebra

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán 12 Kết nối tri thức Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.