• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Cánh diều / Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Ngày 09/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Cánh diều Tag với:GIAI SBT CHUONG 7 TOAN 11 CD

Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm – SÁCH GIÁO KHOA SGK Cánh diều 2024

================

Giải SBT Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 1 trang 65 SBT Toán 11 Tập 2: Cho hàm số y = f(x) có đạo hàm x0 là f’(x0). Phát biểu nào sau đây là đúng?

Cho hàm số y = f(x) có đạo hàm x0 là f’(x0). Phát biểu nào sau đây là đúng

Lời giải:

Đáp án đúng là: B

Hàm số y = f(x) có đạo hàm x0 là f’(x0) thì f‘x=limx→x0fx−fx0x−x0.

Bài 2 trang 65 SBT Toán 11 Tập 2: Điện lượng Q truyền trong dây dẫn là một hàm số của thời gian t, Q = Q(t). Cường độ trung bình trong khoảng thời gian |t – t0| được xác định bởi công thức Qt−Qt0t−t0.Cường độ tức thời tại thời điểm t0 là:

Điện lượng Q truyền trong dây dẫn là một hàm số của thời gian t, Q = Q(t)

Lời giải:

Đáp án đúng là: D

Cường độ tức thời tại thời điểm t0 là limt→t0Qt−Qt0t−t0.

Bài 3 trang 65 SBT Toán 11 Tập 2: Hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là:

A. f(x0).

B. f’(x0).

C. x0.

D. –f’(x0).

Lời giải:

Đáp án đúng là: B

Hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là: f’(x0).

Bài 4 trang 65 SBT Toán 11 Tập 2: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là:

A. y = f(x0)(x – x0) + f(x0).

B. y = f’(x0)(x + x0) + f(x0).

C. y = f’(x0)(x – x0) + f(x0).

D. y = f’(x0)(x – x0) – f(x0).

Lời giải:

Đáp án đúng là: C

Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là:

y = f’(x0)(x – x0) + f(x0).

Bài 5 trang 65 SBT Toán 11 Tập 2: Vận tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là:

A. f’(t0).

B. f(t0) – f’(t0).

C. f(t0).

D. – f’(t0).

Lời giải:

Đáp án đúng là: A

Vận tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là: s’(t0) = f’(t0).

Bài 6 trang 65 SBT Toán 11 Tập 2: Tính đạo hàm của mỗi hàm số sau bằng định nghĩa:

a) f(x) = x + 2;

b) g(x) = 4x2 – 1;

c) hx=1x−1.

Lời giải:

a) Hàm số y = f(x) = x + 2.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = f(x + ∆x) – f(x) = (x + ∆x + 2) – (x + 2) = ∆x.

Suy ra ΔyΔx=ΔxΔx=1

Ta thấy limΔx→0ΔyΔx=limΔx→01=1

Vậy f'(x) = 1.

b) Hàm số y = g(x) = 4x2 – 1.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = g(x + ∆x) – g(x) = 4(x + ∆x)2 – 1 – (4x2 – 1)

= 4x2 + 8x. ∆x + (∆x)2 – 1 – 4x2 + 1

= 8x.∆x + (∆x)2.

Suy ra ΔyΔx=8x⋅Δx+Δx2Δx=8x+Δx.

Ta thấy limΔx→0ΔyΔx=limΔx→08x+Δx=8x.

Vậy g'(x) = 8x.

c) Hàm số y=hx=1x−1.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: Δy=hx+Δx−hx=1x+Δx−1−1x−1

=x−1−x+Δx−1x+Δx−1x−1=−Δxx+Δx−1x−1

Suy ra ΔyΔx=−Δxx+Δx−1x−1Δx=−1x+Δx−1x−1.

Ta thấy limΔx→0ΔyΔx=limΔx→0−1x+Δx−1x−1=−1x−12.

Vậy h‘x=−1x−12.

Bài 7 trang 65 SBT Toán 11 Tập 2: Chứng minh hàm số f(x) = |x – 2| không có đạo hàm tại điểm x0 = 2, nhưng có đạo hàm tại mọi điểm x ≠ 2….

Lời giải:

Hàm số y = f(x) = |x – 2|.

• Với x > 2, ta có: f(x) = |x – 2| = x – 2.

Xét ∆x là số gia của biến số tại điểm x > 2.

Ta có: ∆y = f(x + ∆x) – f(x) = (x + ∆x – 2) – (x – 2) = ∆x.

Suy ra: ΔyΔx=ΔxΔx=1.

Ta thấy: limΔx→0ΔyΔx=limΔx→01=1.

Vậy đạo hàm của hàm số f(x) = |x – 2| tại điểm x > 2 là 1.

• Với x < 2, ta có: f(x) = |x – 2| = 2 – x.

Ta có: ∆y = f(x + ∆x) – f(x) = (2 – x – ∆x) – (2 – x) = –∆x.

Suy ra: ΔyΔx=−ΔxΔx=−1.

Ta thấy: limΔx→0ΔyΔx=limΔx→0−1=−1.

Vậy đạo hàm của hàm số f(x) = |x – 2| tại điểm x < 2 là –1.

• Xét ∆x là số gia của biến số tại điểm x0 = 2.

Ta có: ∆y = f(2 + ∆x) – f(2) = |2 + ∆x – 2| – |2 – 2| = ∆x.

Suy ra: ΔyΔx=ΔxΔx.

Ta thấy: limΔx→0+ΔyΔx=limΔx→0+ΔxΔx=limΔx→0+ΔxΔx=1.

limΔx→0−ΔyΔx=limΔx→0−ΔxΔx=limΔx→0−−ΔxΔx=−1.

Do đó, không tồn tại limΔx→0ΔfΔx nên hàm số không có đạo hàm tại điểm x0 = 2.

Vậy hàm số f(x) = |x – 2| không có đạo hàm tại điểm x0 = 2, nhưng có đạo hàm tại mọi điểm x ≠ 2.

Bài 8 trang 66 SBT Toán 11 Tập 2: Cho hàm số f(x) = x3 có đồ thị (C).

a) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng –1.

b) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 8.

Lời giải:

Hàm số f(x) = x3.

Xét ∆x là số gia của biến số tại điểm x.

Ta có: ∆y = f(x + ∆x) – f(x) = (x + ∆x)3 – x3

= x3 + 3x2.∆x + 3x(∆x)2 + (∆x)3 – x3

= 3x2.∆x + 3x(∆x)2 + (∆x)3

= ∆x[3x2 + 3x.∆x + (∆x)2]

Suy ra ΔyΔx=Δx⋅3x2+3x⋅Δx+Δx2Δx=3x2+3x⋅Δx+Δx2.

Ta thấy limΔx→0ΔyΔx=limΔx→03x2+3x⋅Δx+Δx2=3x2+3x⋅0+02=3x2.

Vậy f'(x) = 3x2.

a) Ta có f'(–1) = 3.(–1)2 = 3 và f(–1) = (–1)3 = –1.

Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng –1 là:

y = f’(–1)(x – (–1)) + f(–1)

Hay y = 3(x + 1) – 1, tức là y = 3x + 2.

b) Gọi hoành độ của tiếp điểm có tung độ bằng 8 là x0.

Do tiếp điểm thuộc (C), nên ta có:

f(x0) = (x0)3 = 8. Suy ra x0 = 2.

Ta có: f'(2) = 3.22 = 12.

Vậy phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 8 là:

y = f’(2)(x – 2) + 8, hay y = 12(x – 2) + 8, tức là y = 12x – 16.

Bài 9 trang 66 SBT Toán 11 Tập 2: Một vật rơi tự do có phương trình chuyển động là st=12gt2, trong đó g = 9,8 m/s2

a) Tìm vận tốc tức thời của vật tại thời điểm t = 3 (s).

b) Tìm thời điểm mà vận tốc tức thời của vật tại thời điểm đó bằng 39,2 (m/s).

Lời giải:

Xét ∆t là số gia của biến số tại điểm t.

Ta có:

Δs=st+Δt−st=12⋅9,8⋅t+Δt2−12⋅9,8⋅t2

=4,9t2+9,8t⋅Δt+4,9Δt2−4,9t2=Δt9,8t+4,9Δt.

Suy ra: ΔsΔt=Δt9,8t+4,9ΔtΔt=9,8t+4,9Δt.

Ta thấy: limΔt→0ΔsΔt=limΔt→09,8t+4,9Δt=9,8t.

Vậy v(t) = s’(t) = 9,8t (m/s).

a) Vận tốc tức thời của vật tại thời điểm t = 3 (s) là:

v(3) = 9,8.3 = 29,4 (m/s).

b) Theo đề bài, ta có: v(t) = 9,8t = 39,2, suy ra t = 4.

Vậy vận tốc tức thời của vật đạt 39,2 m/s tại thời điểm t = 4 (s).

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 6

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Bài 2: Các quy tắc tính đạo hàm

=============
THUỘC: Giải SÁCH bài tập Toán 11 – SGK Cánh diều

Bài liên quan:

  1. Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  2. Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  3. Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – CÁNH DIỀU

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.