• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Cánh diều / Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7

Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7

Ngày 09/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Cánh diều Tag với:GIAI SBT CHUONG 7 TOAN 11 CD

Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7 – SÁCH GIÁO KHOA SGK Cánh diều 2024

================

Giải SBT Toán 11 Bài tập cuối chương 7

Bài 38 trang 78 SBT Toán 11 Tập 2: Cho f = f(x), g = g(x), h = h(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Khi đó, (fg + h)’ bằng:

A. f’g’ + h’.

B. f’g’h’.

C. f’g + fg’ + h’.

D. f’gh’ + fg’h.

Lời giải:

Đáp án đúng là: C

Ta có (fg + h)’ = (fg)’ + h’ = f’g + fg’ + h’.

Bài 39 trang 78 SBT Toán 11 Tập 2: Cho hàm số fx=sinx2cosx2. Khi đó, f’(x) bằng:

A. 12cosx.

B. −12cosx.

C. −14cosx2sinx2.

D. cosx.

Lời giải:

Xét hàm số fx=sinx2cosx2.

Ta có f‘x=sinx2‘⋅cosx2+sinx2⋅cosx2‘

=12cosx2⋅cosx2+sinx2⋅12⋅−sinx2

=12cos2x2−12sin2x2

=12⋅cos2x2−sin2x2=12cosx.

Bài 40 trang 79 SBT Toán 11 Tập 2: Cho hàm số fx=1ax+b. Khi đó, f’(x) bằng:

A. −1ax+b2.

B. 1ax+b2.

C. aax+b2.

D. –aax+b2.

Lời giải:

Đáp án đúng là: D

Ta có f‘x=−ax+b‘ax+b2=−aax+b2.

Bài 41 trang 79 SBT Toán 11 Tập 2: Cho hàm số f(x) = sinax. Khi đó, f’(x) bằng:

A. cosax.

B. –cosax.

C. acosax.

D. acosx.

Lời giải:

Đáp án đúng là: C

Ta có f’(x) = (sinax)’ = (ax)’.cosax = acosax.

Bài 42 trang 79 SBT Toán 11 Tập 2: Cho hàm số f(x) = cotax. Khi đó, f’(x) bằng:

A. −asin2ax.

B. asin2ax.

C. 1sin2ax.

D. −1sin2ax.

Lời giải:

Đáp án đúng là: A

Ta có f‘x=cotax‘=−ax‘sin2ax=−asin2ax.

Bài 43 trang 79 SBT Toán 11 Tập 2: Cho hàm số f(x) = loga(bx). Khi đó, f’(x) bằng:

A. 1bx.

B. 1ax.

C. 1xlna.

D. 1xlnb.

Lời giải:

Đáp án đúng là: C

Ta có f‘x=logabx‘=bx‘bxlna=bbxlna=1xlna.

Bài 44 trang 79 SBT Toán 11 Tập 2: Cho hàm số f(x) = eax. Khi đó, f’’(x) bằng:

A. eax.

B. a2eax.

C. a2ex.

D. e2ax.

Lời giải:

Đáp án đúng là: B

Xét hàm số f(x) = eax. Ta có:

f’(x) = (eax)’ = (ax)’.eax = a.eax.

f’’(x) =(a.eax)’ = a.(ax)’.eax = a.a.eax = a2.eax.

Bài 45 trang 79 SBT Toán 11 Tập 2: Hệ số góc của tiếp tuyến của đồ thị hàm số f(x) = x4 tại điểm M(2; 16) bằng:

A. 48.

B. 8.

C. 1.

D. 32.

Lời giải:

Đáp án đúng là: D

Ta có: f′(x) = 4x3

Hệ số góc của tiếp tuyến của đồ thị hàm số f(x) = x4 tại điểm M(2;16) bằng:

k = f′(2) = 4.23 = 4.8 = 32.

Bài 46 trang 79 SBT Toán 11 Tập 2: Tìm đạo hàm của mỗi hàm số sau:

a) y = (2x2 + 1)3; b) y = sin3xcos2x – sin2xcos3x;

c) y=tanx+tan2x1−tanxtan2x; d) y=e3x+12x−1.

Lời giải:

a) y’ = [(2x2 + 1)3]’ = 3.(2x2 + 1)2.(2x2 + 1)’

= 3 . (2x2 + 1)2 . 4x = 12x(2x2 + 1)2.

b) Ta có: y = sin3xcos2x – sin2xcos3x = sin(3x – 2x) = sinx.

Do đó y’ = (sinx)’ = cosx.

c) Ta có: y=tanx+tan2x1−tanxtan2x=tanx+2x=tan3x

y‘=tan3x‘=3x‘cos23x=3cos23x. 

d) y‘=e3x+12x−1‘=e3x+1‘⋅2x−1−2x−1‘⋅e3x+12x−12

=3e3x+1⋅2x−1−2x−1ln2⋅e3x+12x−12

=e3x+1⋅2x−13−ln22x−12=e3x+13−ln22x−1

=e⋅e3x3−ln22x2=2e3−ln2e32x.

Bài 47 trang 79 SBT Toán 11 Tập 2: Cho hàm số f(x) = ln(4x + 3). Tính f’(x) và f’’(x) tại điểm x0 = 1

Lời giải:

Xét hàm số f(x) = ln(4x + 3). Ta có:

• f‘x=ln4x+3‘=44x+3.

Do đó f‘1=44.1+3=47.

• f”x=44x+3‘=−4⋅4x‘4x+32=−4⋅44x+32=−164x+32.

Do đó f”1=−164⋅1+32=−1672=−1649.

Bài 48 trang 79 SBT Toán 11 Tập 2: Cho hàm số fx=13x3−12x2−12x.

a) Tìm f’(x) và giải bất phương trình f’(x) > 0.

b) Tìm f’’(x) và giải phương trình f’’(x) = 0.

Lời giải:

a) Xét hàm số hàm số fx=13x3−12x2−12x. Ta có:

f‘x=13x3−12x2−12x‘=x2−x−12.

Khi đó f‘x>0⇔x2−x−12>0⇔x−4x+3>0⇔x>4x<−3

Vậy tập nghiệm của bất phương trình là: S = (–∞; –3) ∪ (4; +∞).

b) Với f’(x) = x2 – x – 12, ta có:

f’’(x) = (x2 – x – 12)’ = 2x – 1.

Khi đó f”x=0⇔2x−1=0⇔x=12.

Vậy phương trình có nghiệm là: x=12.

Bài 49 trang 79 SBT Toán 11 Tập 2: Cho hàm số fx=2x−3x+4 có đồ thị (C)

a) Tìm đạo hàm của hàm số.

b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng –3.

c) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1.

Lời giải:

a) Xét hàm số fx=2x−3x+4. Ta có:

f‘x=2x−3x+4‘=2x+4−2x−3⋅1x+42=11x+42.

b) Với x = –3 ta có y=2⋅−3−3−3+4=−91=−9 và  f‘−3=11−3+42=11.

Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng –3 là:

y = f’(–3)[x – (–3)] + f(–3)

Hay y = 11.(x + 3) – 9, tức là y = 11x + 24.

c) Gọi M(x0; 1) là tiếp điểm của đồ thị (C) có tung độ bằng 1.

Khi đó  2x0−3x0+4=1⇔2x0−3=x0+4⇔x0=7. Suy ra M(7; 1).

Với x0 = 7, ta có  f‘7=117+42=111.

Phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1 là:

y = f’(7).(x – 7) + 1

Hay y=111x−7+1, tức là y=111x+411.

Bài 50 trang 80 SBT Toán 11 Tập 2: Một chất điểm có phương trình chuyển động st=2sin6t+π4, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm t=π4  s.

Lời giải:

s‘t=2sin6t+π4‘=2⋅6t+π4‘⋅cos6t+π4=12cos6t+π4;

s”t=12cos6t+π4‘=12⋅6t+π4‘⋅−sin6t+π4=−72sin6t+π4.

Vận tốc tức thời của chất điểm tại thời điểm t=π4 (s) là:

s‘π4=12cos6⋅π4+π4=12cos7π4=62

Gia tốc tức thời của chất điểm tại thời điểm t=π4 s là:

s”π4=−72sin6⋅π4+π4=−72sin7π4=362

Bài 51 trang 80 SBT Toán 11 Tập 2: Kính viễn vọng không gian Hubble được triển khai vào ngày 24 tháng 4 năm 1990, bởi tàu con thoi Discovery. Vận tốc của tàu con thoi trong nhiệm vụ này từ khi xuất phát tại t = 0 (s) cho đến khi tên lửa đẩy nhiên liệu rắn bị loại bỏ ở (s) được xác định theo phương trình sau:

v(t) = 0,001302t3 – 0,09029t2 + 23,61t – 3,083 (ft/s).

(Nguồn: James Stewart, Calculus)

Tính gia tốc tức thời của tàu con thoi trên tại thời điểm t = 100 (s) (làm tròn kết quả đến hàng phần nghìn).

Lời giải:

Gia tốc tức thời của tàu con thoi tại thời điểm t (s) là:

a(t) = v’(t)

= (0,001302t3 – 0,09029t2 + 23,61t – 3,083)’

= 0,003906t2 – 0,18058t + 23,61 (ft/s2).

Gia tốc tức thời của tàu con thoi tại thời điểm t = 100 (s) là:

a(100) = 0,003906.1002 – 0,18058.100 + 23,61 = 44,612 (ft/s2).

Bài 52 trang 80 SBT Toán 11 Tập 2: Sau khi uống đồ uống có cồn, nồng độ cồn trong máu tăng lên rồi giảm dần được xác định bằng hàm số C(t)=1,35te–2802t, trong đó C (mg/ml) là nồng độ cồn, t (h) là thời điểm đo tính từ ngay sau khi uống 15 ml đồ uống có cồn.

(Nguồn: P. Wilkinson et al., Pharmacokinetics of Ethanol after Oral Administration in the Fasting State, 1977)

Giả sử một người uống hết nhanh 15 ml đồ uống có cồn. Tính tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t = 3 (h) (làm tròn kết quả đến hàng phần triệu).

Lời giải:

Tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t là:

C’(t) = (1,35te–2,802t)’ = (1,35t)’.e–2,802t + 1,35t.(e–2,802t)’

= 1,35e–2,802t + 1,35t.(–2,802).e–2,802t = 1,35e–2,802t.(1 − 2,802t)

Tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t = 3 (h) là:

C’(3) = 1,35e–2,802.3.(1 − 2,802.3) ≈ −0,002235 mg/mlh.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 3: Đạo hàm cấp hai

Bài tập cuối chương 7

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

=============
THUỘC: Giải SÁCH bài tập Toán 11 – SGK Cánh diều

Bài liên quan:

  1. Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai
  2. Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  3. Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – CÁNH DIỀU

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.