• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Cánh diều / Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai

Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai

Ngày 09/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Cánh diều Tag với:GIAI SBT CHUONG 7 TOAN 11 CD

Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai – SÁCH GIÁO KHOA SGK Cánh diều 2024

================

Giải SBT Toán 11 Bài 3: Đạo hàm cấp hai

Bài 29 trang 77 SBT Toán 11 Tập 2: Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là:

A. f(t0).

B. f’’(t0).

C. f’(t0).

D. –f’(t0).

Lời giải:

Đáp án đúng là: B

Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là đạo hàm cấp hai của f(s = f(t) và bằng f’’(t0).

Bài 30 trang 77 SBT Toán 11 Tập 2: Cho hàm số f(x) = e–x. Khi đó f’’(x) bằng:

A. e–x.

B. – e–x.

C. – ex.

D. ex.

Lời giải:

Đáp án đúng là: A

Xét hàm số f(x) = e–x. Ta có:

f’(x) = (e–x) = – e–x.

f’’(x) = (– e–x)’ = e–x.

Vậy ta chọn phương án A.

Bài 31 trang 77 SBT Toán 11 Tập 2: Cho hàm số f(x) = ln(3x). Khi đó f’’(x) bằng:

A. −19x2.

B. −1x2.

C. 3x2.

D. −3x2.

Lời giải:

Đáp án đúng là: B

Xét hàm số f(x) = ln(3x). Ta có:

f‘x=ln3x‘=3x‘3x=33x=1x.

f‘‘x=1x‘=−1x2.

Vậy ta chọn phương án B.

Bài 32 trang 78 SBT Toán 11 Tập 2: Cho hàm số fx=1x. Khi đó f’’(1) bằng:

A. 1.

B. –2.

C. 2.

D. –1.

Lời giải:

Đáp án đúng là: C

Xét hàm số fx=1x. Ta có:

f‘x=1x‘=−1x2;

f‘‘x=−1x2‘=1−x2‘−−x2‘−x22=−−2xx4=2x3.

Do đó f‘‘1=213=2.

Bài 33 trang 78 SBT Toán 11 Tập 2: Tìm đạo hàm cấp hai của mỗi hàm số sau:

a) fx=13x+5;

b) gx=2x+3x2.

Lời giải:

a) Xét hàm số fx=13x+5. Ta có:

f‘x=−3x+5‘3x+52=−33x+52;

f”x=−3⋅−3x+52‘3x+522=3⋅23x+5⋅33x+54=183x+53.

b) Xét hàm số gx=2x+3x2. Ta có:

g‘x=x+3x2‘ln2⋅2x+3x2=6x+1ln2⋅2x+3x2.

g‘‘x=ln26x+1‘⋅2x+3x2+6x+1⋅2x+3x2‘

=ln26⋅2x+3x2+6x+1⋅6x+1ln2⋅2x+3x2

=6ln2⋅2x+3x2+6x+1ln22⋅2x+3x2.

Bài 34 trang 78 SBT Toán 11 Tập 2: Cho hàm số f(x) = sinx . cosx . cos2x.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại x0=π6.

Lời giải:

a) Ta có: fx=sinx⋅cosx⋅cos2x=12sin2x⋅cos2x=14sin4x.

Khi đó, f‘x=14⋅4x‘⋅cos4x=cos4x.

f’’(x) = (4x)’.(–sin4x) = –4sin4x.

b) Vì f’’(x) = –4sin4x nên ta có:

f”π6=−4sin4⋅π6=−4sin2π3=−4⋅32=−23.

Bài 35 trang 78 SBT Toán 11 Tập 2: Cho hàm số f(x) = x3 + 4x2 + 5. Giải bất phương trình f’(x) – f’’(x) ≥ 0.

Lời giải:

Xét hàm số f(x) = x3 + 4x2 + 5. Ta có:

f’(x) = (x3 + 4x2 + 5)’ = 3x2 + 8x;

f’’(x) = (3x2 + 8x)’ = 6x + 8.

Khi đó, f’(x) – f’’(x) = 3x2 + 8x – 6x – 8 = 3x2 + 2x – 8.

Để f’(x) – f’’(x) ≥ 0 thì 3x2 + 2x – 8 ≥ 0

⇔3x−4x+2≥0⇔x≥43x≤−2.

Vậy bất phương trình có tập nghiệm S=−∞;−2∪43;+∞.

Bài 36 trang 78 SBT Toán 11 Tập 2: Một chất điểm chuyển động theo phương trình st=13t3−3t2+8t+2, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm:

a) Tại thời điểm t = 5 (s).

b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng –1 m/s.

Lời giải:

Ta có: s‘t=13t3−3t2+8t+2‘=t2−6t+8;

s’’(t) = (t2 – 6t + 8)’ = 2t – 6.

Vậy gia tốc tức thời của chất điểm tại thời điểm t (s) là s’’(t) = (t2 – 6t + 8)’ = 2t – 6.

a) Gia tốc tức thời của chất điểm tại thời điểm t = 5 (s) là:

s’’(5) = 2.5 – 6 = 4 (m/s2).

b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng –1 m/s là:

s’(t) = t2 – 6t + 8 = –1

⇔ t2 – 6t + 9 = 0

⇔ (t – 3)2 = 0

⇔ t – 3 = 0

⇔ t = 3 (s).

Gia tốc tức thời của chất điểm tại thời điểm t = 3 (s) là:

s’’(3) = 2.3 – 6 = 0 (m/s2).

Bài 37 trang 78 SBT Toán 11 Tập 2: Một chất điểm có phương trình chuyển động st=3sint+π3, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimet. Tính gia tốc tức thời của chất điểm tại thời điểm t=π2  s.

Lời giải:

Ta có:

s‘t=3cost+π3;

s”t=−3sint+π3.

Do đó gia tốc tức thời của chất điểm tại thời điểm t (s) là

s”t=−3sint+π3 (cm/s2).

Gia tốc tức thời của chất điểm tại thời điểm t=π2  s là:

s”π2=−3sinπ2+π3=−3sin5π6=−32 (cm/s2).

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 2: Các quy tắc tính đạo hàm

Bài 3: Đạo hàm cấp hai

Bài tập cuối chương 7

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

=============
THUỘC: Giải SÁCH bài tập Toán 11 – SGK Cánh diều

Bài liên quan:

  1. Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 7
  2. Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm
  3. Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – CÁNH DIỀU

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.