• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Chuyên đề Toán 10 – Cánh diều / Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Ngày 20/03/2023 Thuộc chủ đề:Giải Chuyên đề Toán 10 – Cánh diều Tag với:CHUYEN DE 3 TOAN 10 CD

Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Giải CHI TIẾT Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Giải mục 1 trang 60 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

 Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Quan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó.

Lời giải chi tiết

+ Với mọi điểm M thuộc elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = e\left( {0 < e < 1} \right)\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F

+ Với mọi điểm M thuộc hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > 0,b > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = e\left( {e > 1} \right)\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F

+ Với mọi điểm M thuộc parabol (P): \({y^2} = 2px\left( {p > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = 1\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F

Giải mục 1 trang 60 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 1 trang 66 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Cho hình chữ nhật ABCD với bốn đỉnh \(A\left( { – 4;3} \right),B\left( {4;3} \right),C\left( {4; – 3} \right),D\left( { – 4; – 3} \right).\)

a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó

b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó

Phương pháp giải

Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) . Khi đó ta có:

+ Hình chữ nhật cơ sở có bốn đỉnh là \(P\left( { – a;b} \right),Q\left( {a;b} \right),R\left( {a; – b} \right),S\left( { – a; – b} \right)\)

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { – a;b} \right),Q\left( {a;b} \right),R\left( {a; – b} \right),S – \left( {a;b} \right).\)

Lời giải chi tiết

a) Elip nhận ABCD là hình chữ nhật cơ sở nên \(a = 4,b = 3\)

Phương trình chính tắc của elip là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)

Để vẽ elip (E), ta có thể làm như sau:

Bước 1: Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn thường thẳng \(x =  – 4,x = 4,y =  – 3,y = 3\)

Bước 2: Tìm một số điểm cụ thể thuộc elip, chẳng hạn, ta thấy điểm \(M\left( {\frac{{12}}{5};\frac{{12}}{5}} \right)\) và điểm \(N\left( {\frac{{16}}{5};\frac{9}{5}} \right)\) thuộc (E) và điểm \({M_1}\left( {\frac{{12}}{5}; – \frac{{12}}{5}} \right),{M_2}\left( { – \frac{{12}}{5};\frac{{12}}{5}} \right),{M_3}\left( { – \frac{{12}}{5}; – \frac{{12}}{5}} \right),{N_1}\left( {\frac{{16}}{5}; – \frac{9}{5}} \right),{N_3}\left( { – \frac{{16}}{5};\frac{9}{5}} \right),{N_3}\left( { – \frac{{16}}{5}; – \frac{9}{5}} \right)\) thuộc (E)

Bước 3: Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn điểm của đỉnh (E) là \({A_1}\left( { – 4;0} \right),{A_1}\left( {4;0} \right),{A_3}\left( {0; – 3} \right),{A_4}\left( {0;3} \right)\)

 Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

b) Hypebol nhận ABCD là hình chữ nhật cơ sở nên \(a = 4,b = 3\)

Phương trình chính tắc của hypebol là \(\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{9} = 1\)

Để vẽ hypebol (H), ta có thể làm như sau:

Bước 1: Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn thường thẳng \(x =  – 4,x = 4,y =  – 3,y = 3\)

Bước 2: Vẽ hai đường chéo của hình chữ nhật cơ sở

Tìm một số điểm cụ thể thuộc hypebol, chẳng hạn, ta thấy điểm \(M\left( {\frac{{20}}{3};4} \right)\) thuộc (H) và điểm \({M_1}\left( {\frac{{20}}{3}; – 4} \right),{M_2}\left( { – \frac{{20}}{3};4} \right),{M_3}\left( { – \frac{{20}}{3}; – 4} \right)\) thuộc (H)

Bước 3: Vẽ đường hypebol (H) bên ngoài hình chữ nhật cơ sở, nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_1}\left( { – 4;0} \right)\) và điểm \({M_2},{M_3}\); nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_2}\left( {4;0} \right)\) và điểm \(M,{M_1}\). Vẽ các điểm thuộc hypebol càng xa gốc tọa độ thì càng sát với đường tiệm cận. Hypebol nhận gốc tọa độ là tâm đối xứng và hai trục tọa độ là hai trục đối xứng.

 Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

 

Giải bài 1 trang 66 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 2 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Các đường conic có phương trình như sau là đường elip hay hypebol? Tìm độ dài các trục, tọa độ tiêu điểm, tiêu cự, tâm sai của các đường conic đó.

a) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

b) \(\frac{{{x^2}}}{{36}} – \frac{{{y^2}}}{{64}} = 1\)

Phương pháp giải

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\) . Khi đó ta có;

+ Độ dài trục lớn: \(2a\), độ dài trục nhỏ: \(2b\)

+ Tiêu điểm \({F_1}( – c;0),{F_2}(c;0)\)

+ Tiêu cự: \(2c = 2\sqrt {{a^2} – {b^2}} \)

+ Tâm sai của elip: \(e = \frac{c}{a}\)

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Độ dài trục thực: \(2a\), độ dài trục ảo: \(2b\)

+ Tiêu điểm \({F_1}( – c;0),{F_2}(c;0)\)

+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}} \)

+ Tâm sai \(e = \frac{c}{a}\)

Lời giải chi tiết

a) \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

Đây là đường elip. Ta có: \(a = 10,b = 8\)

+ Độ dài trục lớn: \(2a = 2.10 = 20\), độ dài trục nhỏ: \(2b = 2.8 = 16\)

+ Tiêu cự: \(2c = 2\sqrt {{a^2} – {b^2}}  = 2\sqrt {{{10}^2} – {8^2}}  = 2.6 = 12\)

+ Tiêu điểm \({F_1}( – 6;0),{F_2}(6;0)\)

+ Tâm sai của elip: \(e = \frac{6}{{10}} = 0,6\)

b) \(\frac{{{x^2}}}{{36}} – \frac{{{y^2}}}{{64}} = 1\)

Đây là đường hypebol. Ta có: \(a = 6,b = 8\)

+ Độ dài trục thực: \(2a = 2.6 = 12\), độ dài trục ảo: \(2b = 2.8 = 16\)

+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}}  = 2\sqrt {{6^2} + {8^2}}  = 2.10 = 20\)

+ Tiêu điểm \({F_1}( – 10;0),{F_2}(10;0)\)

+ Tâm sai \(e = \frac{{10}}{6} = \frac{5}{3}\)

Giải bài 2 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 3 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Cho parabol có phương trình chính tắc \({y^2} = 2x\). Tìm tiêu điểm, phương trình đường chuẩn của parabol và vẽ parabol đó.

Phương pháp giải

Cho parabol có PTCT: \({y^2} = 2px\) trong đó \(p > 0\)

+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)

+ Đường chuẩn: \(\Delta : x =  – \frac{p}{2}\)

Lời giải chi tiết

+ Ta có: \(2p = 2 \Rightarrow p = 1\)

Tiêu điểm của parabol (P) là \(F\left( {\frac{1}{2};0} \right)\)

Đường chuẩn: \(\Delta : x =  – \frac{1}{2}\)

+ Vẽ parabol

Để vẽ parabol (P): \({y^2} = 2x\) ta có thể làm như sau:

Bước 1: Lập bảng giá trị

x

0

0,5

0,5

2

2

4,5

4,5

y

0

-1

1

-2

2

-3

3

Chú ý rằng tương ứng với mỗi giá trị dương của x có hai giá trị của y đối nhau

Bước 2: Vẽ các điểm cụ thể mà hoành độ và tung độ được xác định như trong bảng giá trị

Bước 3: Vẽ đường parabol bên phải trục Oy, đỉnh O, trục đối xứng là Ox, parabol đi qua các điểm được vẽ ở Bước 2

 Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Giải bài 3 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta : x =  – 5\) và điểm \(F\left( { – 4;0} \right)\). Lấy 3 điểm \(A\left( { – 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)

a) Tính các tỉ số sau: \(\frac{{AF}}{{d\left( {A,\Delta } \right)}},\frac{{BF}}{{d\left( {B,\Delta } \right)}},\frac{{CF}}{{d\left( {C,\Delta } \right)}}\)

b) Hỏi mỗi điểm A, B, C lần lượt nằm trên loại đường conic nào nhận F là tiêu điểm và \(\Delta \) là đường chuẩn ứng với tiêu điểm đó?

Phương pháp giải

a) Ta có:

\(\begin{array}{l}AF = \sqrt {{{\left( { – 4 + 3} \right)}^2} + {{\left( {0 – 1} \right)}^2}}  = \sqrt 2 ,d\left( {A,\Delta } \right) = \frac{{\left| { – 3 + 0.1 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 2 \Rightarrow \frac{{AF}}{{d\left( {A,\Delta } \right)}} = \frac{{\sqrt 2 }}{2}\\BF = \sqrt {{{\left( { – 4 – 2} \right)}^2} + {{\left( {0 – 8} \right)}^2}}  = 10,d\left( {B,\Delta } \right) = \frac{{\left| {2 + 0.8 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 7 \Rightarrow \frac{{BF}}{{d\left( {B,\Delta } \right)}} = \frac{{10}}{7}\\CF = \sqrt {{{\left( { – 4 – 0} \right)}^2} + {{\left( {0 – 3} \right)}^2}}  = 5,d\left( {C,\Delta } \right) = \frac{{\left| {0 + 0.3 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5 \Rightarrow \frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\end{array}\)

b)

+ Vì \(\frac{{AF}}{{d\left( {A,\Delta } \right)}} < 1\) nên A nằm trên elip

+ Vì \(\frac{{BF}}{{d\left( {B,\Delta } \right)}} > 1\) nên B nằm trên hypebol

+ Vì \(\frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\) nên C nằm trên parabol

Lời giải chi tiết

Giải bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 5 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Vệ tinh nhân tạo lần đầu tiên được Liên Xô (cũ) phóng từ Trái Đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Người ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1.342 dặm (1 dặm xấp xỉ 1.609 km). Tìm tâm sai của quỹ đạo đó, biết bán kinh của Trái Đất xấp xỉ 4.000 dặm

Lời giải chi tiết

Chọn hệ trục tọa độ sao cho tâm Trái Đất trùng với tiêu điểm \({F_1}\) của elip

Khi đó elip có phương trình là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

Theo đề bài, ta có: vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm, mà bán kính của Trái Đất xấp xỉ 4000 dặm nên vệ tinh cách tâm Trái Đất gần nhất là 583 + 4000 = 4583 dặm và xa nhất là 1342 + 4000 = 5342 dặm.

Giả sử vệ tinh có toạ độ là \(M\left( {x;y} \right)\).

Khi đó khoảng cách từ vệ tinh đến tâm Trái Đất là: \(M{F_1} = a + \frac{c}{a}x\)

Vì \( – a \le x \le a\) nên \(a – c \le M{F_1} \le a + c\)

Vậy khoảng cách nhỏ nhất và lớn nhất từ vệ tinh đến tâm Trái Đất lần lượt là a – c và a + c.

\( \Rightarrow \left\{ \begin{array}{l}a – c = 4.583\\a + c = 5.342\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 4.962,5\\c = 379,5\end{array} \right. \Rightarrow e = \frac{c}{a} = \frac{{379,5}}{{4.962,5}} \approx 0,076\)

Vậy tâm sai của quỹ đạo này xấp xỉ 0,076.

Giải bài 5 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 6 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Sao Diêm Vương chuyển động xung quanh Mặt Trời theo quỹ đạo là một đường elip có một trong hai tiêu điểm là tâm của Mặt Trời. Biết elip này có bán trục lớn \(a \approx 5,{906.10^6}\left( {km} \right)\) và tâm sai \(e \approx 0,249\) (Nguồn: http://vi.wikimedia.org)

Tìm khoảng cách nhỏ nhất (gần đúng) giữa sao Diêm Dương và Mặt Trời

Lời giải chi tiết

Chọn hệ trục tọa độ sao cho tâm Trái Đất trùng với tiêu điểm \({F_1}\) của elip

Khi đó elip có phương trình là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

Theo đề bài, ta có: elip này có bán trục lớn \(a \approx 5,{906.10^6}\left( {km} \right)\) và tâm sai \(e \approx 0,249\)

Giả sử Sao Diêm Vương có toạ độ là \(M\left( {x;y} \right)\)

Khi đó khoảng cách giữa Sao Diêm Vương và Mặt Trời là: \(M{F_1} = a + ex\)

Vì \(x \ge  – a\) nên \(M{F_1} \ge a – ea \approx 5,{906.10^6} – 0,249.5,{906.10^6} = 4.435.406\left( {km} \right)\)

Vậy khoảng cách nhỏ nhất giữa Sao Diêm Vương và Mặt Trời xấp xỉ 4.435.406 km.

Giải bài 6 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Giải bài 7 trang 67 Chuyên đề học tập Toán 10 – Cánh diều>

Đề bài

Cho đường thẳng \(\Delta \) và điểm O sao cho khoảng cách từ O đến \(\Delta \) là OH = 1 (Hình 39). Với mỗi điểm M di động trong mặt phẳng, gọi K là hình chiếu vuông góc của M lên \(\Delta \). Chứng minh tập hợp các điểm M trong mặt phẳng sao cho \(M{K^2} – M{O^2} = 1\) là một đường parabol.

Giải Bài 4. Ba đường conic – Chuyên đề Toán 10 CD

Lời giải chi tiết

Chọn hệ trục toạ độ sao cho điểm O trùng với gốc toạ độ và trục Ox trùng với đường thẳng OH.

Giả sử M có toạ độ (x; y) thì K có toạ độ là (–1; y).

Khi đó:

\(\begin{array}{l}M{K^2} – M{O^2} = 1\\ \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y – y} \right)^2} – {\left( {0 – x} \right)^2} – {\left( {0 – y} \right)^2} = 1\\ \Rightarrow {x^2} + 2x + 1 – {x^2} – {y^2} = 1 \Rightarrow {y^2} = 2x\end{array}\)

Vậy tập hợp các điểm M là parabol có phương trình \({y^2} = 2x\)

Giải bài 7 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

Bài liên quan:

  1. Giải Bài 3. Parabol – Chuyên đề Toán 10 CD
  2. Giải Bài 2. Hypebol – Chuyên đề Toán 10 CD
  3. Giải Bài 1. Elip – Chuyên đề Toán 10 CD

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • GIẢI BÀI TẬP Chuyên đề Toán 10 – SÁCH CÁNH DIỀU

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.