• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 11 / Dùng phương pháp quy nạp toán học chứng minh đẳng thức

Dùng phương pháp quy nạp toán học chứng minh đẳng thức

Ngày 26/01/2020 Thuộc chủ đề:Toán lớp 11 Tag với:Học bài 1 chương 3 Đại số 11

Phương pháp:  Giả sử cần chứng minh đẳng thức \(P(n) = Q(n)\) (hoặc \(P(n) > Q(n)\)) đúng với \(\forall n \ge {n_0},{\rm{ }}{n_0} \in \mathbb{N}\) ta thực hiện các bước sau:

Bước 1:  Tính \(P({n_0}),{\rm{ }}Q({n_0})\) rồi chứng minh \(P({n_0}) = Q({n_0})\)

Bước 2:  Giả sử \(P(k) = Q(k);{\rm{ }}k \in \mathbb{N},k \ge {n_0}\), ta cần chứng minh

\(P(k + 1) = Q(k + 1)\).

Ví dụ 1:

Chứng minh rằng \(\forall n \in {{\rm N}^*}\) ta luôn có đẳng thức sau:

\(1 + 2 + … + n = \,\frac{{n(n + 1)}}{2}\)

Hướng dẫn:

Đặt \({A_n} = 1 + 2 + … + n = \,\frac{{n(n + 1)}}{2}\,\)

Với n=1, ta có: \(1 = \frac{{1.(1 + 1)}}{2} = 1\) (đúng)

Giả sử với \(n = k \ge 1\) ta có:

\({A_n} = 1 + 2 + … + n = \,\frac{{n(n + 1)}}{2}\,\) (giả thiết quy nạp)

Ta phải chứng minh: \({A_{n + 1}} = 1 + 2 + … + n + (n + 1) = \,\frac{{(n + 1)(n + 2)}}{2}\)

Ta có: \({A_{n + 1}} = 1 + 2 + … + n + (n + 1) = \,\frac{{n(n + 1)}}{2} + (n + 1)\)

\(\Leftrightarrow {A_{n + 1}} = \,\frac{{n(n + 1) + 2(n + 1)}}{2} = \frac{{(n + 1)(n + 2)}}{2}\) ( điều phải chứng minh).

Vậy \(1 + 2 + … + n = \,\frac{{n(n + 1)}}{2}\) \(\forall n \in {{\rm N}^*}\).

 

Ví dụ 2:

Chứng minh rằng \(\forall n \in {{\rm N}^*}\) ta luôn có đẳng thức sau:

\(1 + 3 + … + {(2n – 1)^2} = \,\frac{{n(4{n^2} – 1)}}{3}\)

Hướng dẫn:

Đặt \({A_n} = 1 + 3 + … + {(2n – 1)^2} = \,\frac{{n(4{n^2} – 1)}}{3}\)

Với n= 1: \({(2.1 – 1)^2} = \frac{{1.({{4.1}^2} – 1)}}{3} = 1\) (đúng)

Giả sử với \(n = k \ge 1\) ta có:

\(1 + 3 + … + {(2n – 1)^2} = \,\frac{{n(4{n^2} – 1)}}{3}\) (giả thiết quy nạp)

Ta phải chứng minh:

\({A_{n + 1}} = 1 + 3 + … + {(2n – 1)^2} + \,{[2(n + 1) – 1]^2} = \,\frac{{(n + 1)[4{{(n + 1)}^2} – 1]}}{3}\,\)

Ta có: \(VT = 1 + 3 + … + {(2n – 1)^2} + \,{[2(n + 1) – 1]^2}\)

Theo giả thiết quy nạp ở trên: \(VT = \frac{{n(4{n^2} – 1)}}{3} + \,{[2(n + 1) – 1]^2}\)

= \(\frac{{4{n^3} – n + 3{{(2n + 1)}^2}}}{3}\) \(= \frac{{4{n^3} – n + 12{n^2} + 12n + 3}}{3}\)

\(= \frac{{4{n^3} + 12{n^2} + 11n + 3}}{3}\) \(= \frac{{4{n^3} + 4{n^2} + \,8{n^2} + 8n + 3n + 3}}{3}\)

\(VT = \frac{{(n + 1)(4{n^2} + 8n + 3)}}{3}\) (1)

Ta lại có: \({\rm{VP}} = \,\frac{{(n + 1)[4{{(n + 1)}^2} – 1]}}{3}\,\)

\(= \,\frac{{(n + 1)[4({n^2} + 2n + 1) – 1]}}{3}\,\)

\(= \,\frac{{(n + 1)(4{n^2} + 8n + 4 – 1)}}{3}\,\)

\({\rm{VP}} = \,\frac{{(n + 1)(4{n^2} + 8n + 3)}}{3}\,\) (2)

Từ (1) và (2): \({A_{n + 1}} = 1 + 3 + … + {(2n – 1)^2} + \,{[2(n + 1) – 1]^2} = \,\frac{{(n + 1)[4{{(n + 1)}^2} – 1]}}{3}\,\)

Vậy \(1 + 3 + … + {(2n – 1)^2} = \,\frac{{n(4{n^2} – 1)}}{3}\) \(\forall n \in {{\rm N}^*}\).

Ví dụ 3:

Chứng mình với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 2 + 3 + … + n = \frac{{n(n + 1)}}{2}\)

Lời giải:

Đặt \(P(n) = 1 + 2 + 3 + … + n\) : tổng n số tự nhiên đầu tiên : \(Q(n) = \frac{{n(n + 1)}}{2}\)

Ta cần chứng minh \(P(n) = Q(n){\rm{  }}\forall n \in \mathbb{N},n \ge 1\).

Bước 1:  Với \(n = 1\) ta có \(P(1) = 1,{\rm{ }}Q(1) = \frac{{1(1 + 1)}}{2} = 1\)

\( \Rightarrow P(1) = Q(1) \Rightarrow (1)\) đúng với \(n = 1\).

Bước 2:  Giả sử \(P(k) = Q(k)\) với \(k \in \mathbb{N},k \ge 1\) tức là:

\(1 + 2 + 3 + … + k = \frac{{k(k + 1)}}{2}\)  (1)

Ta cần chứng minh \(P(k + 1) = Q(k + 1)\), tức là:

\(1 + 2 + 3 + … + k + (k + 1) = \frac{{(k + 1)(k + 2)}}{2}\)  (2)

Thật vậy: \(VT(2) = (1 + 2 + 3 + … + k) + (k + 1)\)

\( = \frac{{k(k + 1)}}{2} + (k + 1)\)       (Do đẳng thức (1))

\( = (k + 1)(\frac{k}{2} + 1) = \frac{{(k + 1)(k + 2)}}{2} = VP(2)\)

Vậy đẳng thức cho  đúng với mọi \(n \ge 1\).

Ví dụ 4:

Chứng minh với mọi số tự nhiên \(n \ge 1\) ta luôn có: \(1 + 3 + 5 + … + 2n – 1 = {n^2}\)

Lời giải :

\( \bullet \) Với \(n = 1\) ta có \({\rm{VT}} = 1,{\rm{ VP}} = {1^2} = 1\)

Suy ra \(VT = VP \Rightarrow \) đẳng thức cho đúng với \(n = 1\).

\( \bullet \) Giả sử đẳng thức cho  đúng với \(n = k\) với \(k \in \mathbb{N},k \ge 1\) tức là:

\(1 + 3 + 5 + … + 2k – 1 = {k^2}\)  (1)

Ta cần chứng minh đẳng thức cho  đúng với \(n = k + 1\), tức là:

\(1 + 3 + 5 + … + (2k – 1) + (2k + 1) = {\left( {k + 1} \right)^2}\)  (2)

Thật vậy: \(VT(2) = (1 + 3 + 5 + … + 2k – 1) + (2k + 1)\)

\( = {k^2} + (2k + 1)\)       (Do đẳng thức (1))

\( = {(k + 1)^2} = VP(1.2)\)

Vậy đẳng thức cho  đúng với mọi \(n \ge 1\).

Bài liên quan:

  1. Dùng phương pháp quy nạp toán học chứng minh tính chất hình học
  2. Dùng phương pháp quy nạp toán học chứng minh bài toán chia hết
  3. Dùng phương pháp quy nạp toán học chứng minh bất đẳng thức
  4. Lý thuyết Phương pháp quy nạp toán học

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học toán lớp 11

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.