• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Trắc nghiệm Mặt Cầu / Đề: Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA vuông góc với đáy, \(SA = a\sqrt 2\). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.

Đề: Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA vuông góc với đáy, \(SA = a\sqrt 2\). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.

25/05/2019 by admin Để lại bình luận Thuộc chủ đề:Trắc nghiệm Mặt Cầu Tag với:Trac nghiem the tich khoi cau

trac nghiem khoi tron xoay

Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA vuông góc với đáy, \(SA = a\sqrt 2\). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.

  • A. \(V = \frac{{32}}{3}\pi {a^3}\).
  • B. \(V = \frac{{4}}{3}\pi {a^3}\).
  • C. \(V =4\pi {a^3}\).
  • D. \(V = \frac{{4\sqrt 2 }}{3}\pi {a^3}\).
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: B

Dễ thấy SAC, SAC, SDC là các tam giác vuông nhận SC làm cạnh huyền, nên tâm mặt cầu ngoại tiếp khối chóp S.ABCD là trung điểm của SC.

Bán kính khối cầu ngoại tiếp hình chóp SABCD là: \(R = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = a.\)

Thể tích khối cầu \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {a^3}\).

=======
Xem thêm Lý thuyết khối tròn xoay

Bài liên quan:

  • Đề: Cho hình chóp S.ABCD, đáy là hình chữ nhật ABCD có \(AD = a,AB = a\sqrt 3 ,\) cạnh bên SA vuông góc với mặt đáy (ABCD) \(\widehat {SBA} = {30^0}\). Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.
  • Đề: Gọi \(V_1\) là thể tích giữa khối lập phương và \(V_2\) là thể tích khối cầu ngoại tiếp khối lập phương đó. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
  • Đề: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C, CA = a, mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (ABC). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
  • Đề: Cho tứ diện \(S.ABC\) có tam giác \(ABC\) vuông tại \(B\), \(AB = a\), \(BC = a\sqrt 3 \) và \(SA = a\sqrt 2 \),\(SB = a\sqrt 2 \), \(SC = a\sqrt 5 \).Tính bán kính mặt cầu ngoại tiếp tứ diện \(S.ABC\).
  • Đề: Cho tứ diện ABCD có ABC và DBC là 2 tam giác đều cạnh chung BC = 2. Cho biết mặt bên (DBC) tạo với mặt đáy (ABC) góc \(2\alpha \) mà \(\cos 2\alpha  =  – \frac{1}{3}\). Hãy xác định tâm O của mặt cầu ngoại tiếp tứ diện đó.
  • Đề: Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có độ dài cạnh đáy bằng 3a và chiều cao bằng 8a. Tính bán kính R của mặt cầu ngoại tiếp tứ diện \(AB'C'C.\)
  • Đề: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân và có độ dài các cạnh \(AB = BC = 2,AA' = 2\sqrt 2 \). Thể tích khối cầu ngoại tiếp tứ diện \(AB'A'C\) là:
  • Đề: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với đáy lớn \(AB = 2a,AB = BC = a\). Cạnh bên SA = 2a và vuông góc với mặt phẳng (ABCD). Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD.
  • Đề: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, tìm bán kính R của mặt cầu ngoại tiếp hình chóp.
  • Đề: Hình cầu có thể tích \(\frac{{8\sqrt 2 \pi }}{3}\) nội tiếp trong một hình lập phương. Tính thể tích V của khối lập phương đó.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.