• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Ứng dụng Tích phân / Đề bài: Một ô tô đang chạy đều với vận tốc 15 (m/s) thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc \( – a\left( {m/{s^2}} \right)\). Biết ô tô chuyển động thêm được 20m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây?

Đề bài: Một ô tô đang chạy đều với vận tốc 15 (m/s) thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc \( – a\left( {m/{s^2}} \right)\). Biết ô tô chuyển động thêm được 20m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây?

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân chuyển động

trac nghiem nguyen ham tich phan


Câu hỏi:

Một ô tô đang chạy đều với vận tốc 15 (m/s) thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc \( – a\left( {m/{s^2}} \right)\). Biết ô tô chuyển động thêm được 20m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây?

  • A. \(\left( {3;4} \right)\) 
  • B. \(\left( {4;5} \right)\)
  • C. \(\left( {5;6} \right)\) 
  • D. \(\left( {6;7} \right)\)
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài.

Đáp án đúng: C

Ta có \(v\left( t \right) = 15 – a.t\left( {m/s} \right) \Rightarrow v\left( t \right) = 0 \Leftrightarrow 15 – a.t = 0 \Leftrightarrow t = \frac{{15}}{a}\left( s \right)\)

Ô tô đi được thêm được 20m, suy ra \(\int\limits_0^{\frac{a}{{15}}} {v\left( t \right)dt = 20 \Leftrightarrow \int\limits_0^{\frac{{15}}{a}} {\left( {15 – a.t} \right)} dt = 20 \Leftrightarrow \left( {15t – \frac{1}{2}a.{t^2}} \right)\left| {\begin{array}{*{20}{c}}{\frac{{15}}{a}}\\0\end{array}} \right.}  = 20\) \( \Leftrightarrow 15\frac{{15}}{a} – \frac{1}{2}a.\frac{{{{15}^2}}}{{{a^2}}} = 20\) \( \Leftrightarrow \frac{{225}}{a} – \frac{{225}}{{2a}} = 20 \Leftrightarrow a = 5,625\left( {m/{s^2}} \right) \Rightarrow a \in \left( {5;6} \right).\)

======
Xem lý thuyết Nguyên hàm – tích phân và ứng dụng tích phân.

Bài liên quan:

  1. Đề bài: Gọi h(t) (cm) là mực nước ở bồn chứa sau khi bơm được t giây. Biết rằng \(h'(t) = \frac{1}{5}\sqrt[3]{{t + 8}}\) và lúc đầu bồn cầu không có nước. Tính mực nước ở bồn sau khi bơm được 6 giây. (Làm tròn kết quả đến hàng phần trăm).
  2. Đề bài: Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu \({h_1} = 280\,\,\,cm\). Giả sử \(h(t)\,\,cm\) là chiều cao của mực nước bơm được tại thời điểm \(t\) giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ \(t\) là \(h'(t) = \frac{1}{{500}}\sqrt[3]{{t + 3}}\) . Hỏi sau bao lâu thì nước bơm được \(\frac{3}{4}\) độ sâu của hồ bơi?​
  3. Đề bài: Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức \(v(t) = 3t + 2\), thời gian được tính theo đơn vị giây, quãng đường đi được tính theo đơn vị met. Tại thời điểm t=2s thì vật đi được quãng đường 10m. Hỏi tại thời điểm t=30s thì vật đi được quãng đường là bao nhiêu?
  4. Đề bài: Một vật chuyển động với vận tốc \(v(t)\,(m/s)\) có gia tốc \(v'(t) = \frac{3}{{1 + t}}(m/{s^2})\). Vân tốc ban đầu của vật là 6 m/s. Tính vận tốc của vật sau 10 giây (làm tròn kết quả đến hàng đơn vị).
  5. Đề bài: Một ô tô đang chuyển động đều với vân tốc \(a\left( {m/s} \right)\) thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) =  – 5t + a\left( {m/s} \right)\), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi vận tốc ban đầu a của ô tô là bao nhiêu, biết từ lúc đạp phanh đến khi dừng hẳn ô tô di chuyển được 40 (m).
  6. Đề bài: Cá hồi Thái Bình Dương đến mùa sinh sản chúng thường bơi từ biển đến thượng nguồn con sông để đẻ trứng trên sỏi đá rồi chết. Khi nghiên cứu một con cá hồi sinh sản người ta phát hiện ra quy luật nó chuyển động trong nước yên lặng là \(s =  – \frac{{{t^2}}}{{10}} + 4t,\) với t (giờ) là khoảng thời gian tính từ lúc cá bắt đầu chuyển động và s (km) là quảng đường cá bơi được trong khoảng thời gian đó. Nếu thả con cá hồi đó vào một dòng sông có vận tốc dòng nước chảy là 2km/h Tính khoảng cách xa nhất mà con cá hồi đó có thể bơi ngược dòng nước đến nơi đẻ trứng.
  7. Đề bài: Một vật chuyển động với vận tốc \(v\left( t \right) = 1,2 + \frac{{{t^2} + 4}}{{t + 3}}\left( {m/s} \right)\). Quãng đường vật đi được sau 4s xấp xỉ bằng:
  8. Đề bài: Một công ty phải gánh chịu nợ gia tăng với tốc độ D(t) đô la mỗi năm, với \(D'\left( t \right) = 90\left( {t + 6} \right)\sqrt {{t^2} + 12t}\) trong đó t là thời gian (tính theo năm) kể từ công ty bắt đầy vay nợ. Đến năm thứ tư công ty đã phải chịu 1 610 640 đô la tiền nợ nần. Tìm hàm số biểu diễn tốc độ nợ nần của công ty này?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.