• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Cực trị của hàm số / Biết \({m_0}\) là giá trị của tham số m để hàm số \(y = {x^3} – 3{x^2} + mx – 1\) có hai điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + x_2^2 – {x_1}{x_2} = 13\). Mệnh đề nào dưới đây đúng?

Biết \({m_0}\) là giá trị của tham số m để hàm số \(y = {x^3} – 3{x^2} + mx – 1\) có hai điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + x_2^2 – {x_1}{x_2} = 13\). Mệnh đề nào dưới đây đúng?

Ngày 04/07/2022 Thuộc chủ đề:Trắc nghiệm Cực trị của hàm số Tag với:Cực trị - Đúng - sai

Câu hỏi:
Biết \({m_0}\) là giá trị của tham số m để hàm số \(y = {x^3} – 3{x^2} + mx – 1\) có hai điểm cực trị \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + x_2^2 – {x_1}{x_2} = 13\). Mệnh đề nào dưới đây đúng?

A. \({m_0} \in \left( { – 1;7} \right)\)          
B. \({m_0} \in \left( { – 15; – 7} \right)\) 
C. \({m_0} \in \left( {7;10} \right)\)     
D. \({m_0} \in \left( { – 7; – 1} \right)\) 

====================

Lời giải tham khảo:

TXĐ : \(D = R\).

Ta có \(y’ = 3{x^2} – 6x + m = 0\). Để hàm số có 2 điểm cực trị \({x_1},\,\,{x_2}\) thì phương trình \(y’ = 0\) có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ‘ = 9 – 3m > 0 \Leftrightarrow m < 3\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = \dfrac{m}{3}\end{array} \right.\).

Theo giả thiết ta có : \(x_1^2 + x_2^2 – {x_1}{x_2} = 13 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} – 3{x_1}{x_2} = 13 \Leftrightarrow 4 – m = 13 \Leftrightarrow m =  – 9\) ™.

Dựa vào các đáp án ta thấy \({m_0} =  – 9 \in \left( { – 15; – 7} \right)\).

Bài liên quan:

  1. Cho hàm số $y=f(x)=\dfrac{-2x^2-3x+1}{-x-3}$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=\mathbb{R}\backslash \left\{3\right\}$.

  2. Cho hàm số $y=f(x)=\dfrac{-2x^2-3x+1}{-x-3}$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=\mathbb{R}\backslash \left\{3\right\}$.

  3. Cho hàm số $y=f(x)=\dfrac{x^2+4x+4}{-x+5}$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=\mathbb{R}\backslash \left\{-5\right\}$.

  4. Cho hàm số $y=f(x)=2x^3-24x^2+72x+1$. Xét tính đúng sai của các phát biểu sau:

    a) $y^{\prime}=6x^2-50x+72$.

  5. Cho hàm số $y=f(x)=-2x^3+15x^2-24x+2$. Xét tính đúng sai của các phát biểu sau:

    a) $y^{\prime}=-6x^2+30x-24$.

  6. Hàm số $y=2x^3-6x^2-18x+5$. Xét tính đúng sai của các phát biểu sau:

    a) Đồ thị hàm số đạt cực đại tại điểm $M(-1;15)$.

  7. Cho hàm số $y=f(x)=2x^3-6x^2-18x-2$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=(0;+\infty)$.

  8. Cho hàm số $y=f(x)$ có bảng biến thiên như hình dưới đây:

    de thi toan online

    Xét tính đúng sai của các phát biểu sau:

  9. Cho hàm số $y=f(x)=-2x^3+24x+2$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=(0;+\infty)$.

  10. Hàm số $y=f(x)$ có bảng biến thiên như hình dưới đây:

    de thi toan online

    Xét tính đúng sai của các phát biểu sau:

  11. Hàm số $y=2x^3-3x^2-12x-3$. Xét tính đúng sai của các phát biểu sau:
  12. Cho hàm số $y=f(x)=\dfrac{-3x^2-x+5}{-x+5}$. Xét tính đúng sai của các phát biểu sau:
  13. Cho hàm số $y=f(x)=\dfrac{-3x^2-2x+4}{-2x+4}$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tập xác định $D=\mathbb{R}\backslash \left\{-2\right\}$.

  14. Cho hàm số $y=f(x)$ có $f^{\prime}(x)=\dfrac{9x^2-18x}{(-3x+3)^2}$. Xét tính đúng sai của các phát biểu sau:
  15. Cho hàm số $y=\dfrac{-x^2+5x-3}{-x-1}$. Xét tính đúng sai của các phát biểu sau:

    a) Hàm số $y=f(x)$ có tổng các giá trị cực trị bằng $-14$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.