• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 11 / Bài 3. Đường thẳng và mặt phẳng song song – Chương 2 – Hình học 11

Bài 3. Đường thẳng và mặt phẳng song song – Chương 2 – Hình học 11

Đăng ngày: 01/11/2019 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Toán lớp 11

Mục lục:

  1. 1. Kiến thức cần nhớ
  2. Bài toán 01: CHỨNG MINH ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG
  3. Bài toán 02: DỰNG THIẾT DIỆN SONG SONG VỚI ĐƯỜNG THẲNG
  4. Bài tập minh họa

1. Kiến thức cần nhớ

a) Vị trí tương đối của đường thẳng và mặt phẳng.

Cho đường thẳng \(d\) và mặt phẳng \(\left( \alpha  \right)\), ta có ba vị trí tương đối giữa chúng là:

– \(d//\left( \alpha  \right)\) nếu \(d\) và \(\left( \alpha  \right)\) không có điểm chung.

– \(d \subset \left( \alpha  \right)\) nếu mọi điểm nằm trong \(d\) đều nằm trong \(\left( \alpha  \right)\).

– \(d\) cắt \(\left( \alpha  \right)\) nếu \(d\) và \(\left( \alpha  \right)\) có duy nhất một điểm chung.

Bài 3. Đường thẳng và mặt phẳng song song – Chương 2 – Hình học 11

b) Các định lý và tính chất

Định lý 1: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \(\left( \alpha  \right)\) mà \(d\) song song với một đường thẳng \(d’\) nằm trong \(\left( \alpha  \right)\) thì \(d\) song song với \(\left( \alpha  \right)\).

Vậy \(\left\{ \begin{array}{l}d \not\subset \left( \alpha  \right)\\d//d’\\d’ \subset \left( \alpha  \right)\end{array} \right. \Rightarrow d//\left( \alpha  \right)\)

Bài 3. Đường thẳng và mặt phẳng song song – Chương 2 – Hình học 11

Định lý 2: Cho đường thẳng \(d\) song song với mặt phẳng \(\left( \alpha  \right)\), nếu mặt phẳng \(\left( \beta  \right)\) chứa \(d\) mà cắt \(\left( \alpha  \right)\) theo giao tuyến \(d’\) thì \(d//d’\).

Vậy \(\left\{ \begin{array}{l}d//\left( \alpha  \right)\\\left( \beta  \right) \cap \left( \alpha  \right) = d’\\d \subset \left( \beta  \right)\end{array} \right. \Rightarrow d//d’\)

Định lý 3: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

Vậy \(\left\{ \begin{array}{l}d//\left( \alpha  \right)\\d//\left( \beta  \right)\\\left( \alpha  \right) \cap \left( \beta  \right) = d’\end{array} \right. \Rightarrow d//d’\).

Định lý 4: Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

Bài toán 01: CHỨNG MINH ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG

Phương pháp:

Để chứng minh đường thẳng \(d\) songsong với mặt phẳng  \(\left( \alpha  \right)\) ta chứng minh \(d\) song song với một đường thẳng \(d’\) nằm trong \(\left( \alpha  \right)\).

Bài 3. Đường thẳng và mặt phẳng song song – Chương 2 – Hình học 11

Ví dụ 1: 

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng có tâm lần lượt là \(O\) và \(O’\).

a) Chứng minh \(OO’\) song song với các mặt phẳng \(\left( {ADF} \right)\) và \(\left( {BCE} \right)\).

b) Gọi \(M,N\) lần lượt là hai điểm trên các cạnh \(AE,BD\) sao cho \(AM = \frac{1}{3}AE,BN = \frac{1}{3}BD\). Chứng minh \(MN\) song song với \(\left( {CDEF} \right)\).

Hướng dẫn:

 

a) Ta có \(OO’\) là đường trung bình của tam giác \(BDF\) ứng với cạnh \(DF\) nên \(OO’\parallel DF\), \(DF \subset \left( {ADF} \right)\)

\( \Rightarrow OO’\parallel \left( {ADF} \right)\).

Tương tự, \(OO’\) là đường trung bình của tam giác \(ACE\) ứng với cạnh \(CE\) nên \(OO’\parallel CE\), \(CE \subset \left( {CBE} \right) \Rightarrow OO’\parallel \left( {BCE} \right)\).

b) Trong \(\left( {ABCD} \right)\), gọi \(I = AN \cap CD\)

Do \(AB\parallel CD\) nên \(\frac{{AN}}{{AI}} = \frac{{BN}}{{BD}} \Rightarrow \frac{{AN}}{{AI}} = \frac{1}{3}\).

Lại có \(\frac{{AM}}{{AE}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AI}} = \frac{{AM}}{{AE}}\)\( \Rightarrow MN\parallel IE\). Mà \(I \in CD \Rightarrow IE \subset \left( {CDEF} \right) \Rightarrow MN\parallel \left( {CDEF} \right)\).

 

Bài toán 02: DỰNG THIẾT DIỆN SONG SONG VỚI ĐƯỜNG THẲNG

Phương pháp:

Sử dụng định nghĩa và các tính chất hoặc biểu thức tọa độ của phép tịnh tiến.

Trong phần này ta sẽ xét thiết diện của mặt phẳng \(\left( \alpha  \right)\) đi qua một điểm song song với hai đường thẳng chéo nhau hoặc \(\left( \alpha  \right)\) chứa một đường thẳng và song song với một đường thẳng; để xác định thiết diện loại này ta sử dụng tính chất: \(\left\{ \begin{array}{l}\left( \alpha  \right)\parallel d\\d \subset \left( \beta  \right)\\M \in \left( \alpha  \right) \cap \left( \beta  \right)\end{array} \right. \Rightarrow \left( \alpha  \right) \cap \left( \beta  \right) = d’\parallel d,M \in d’\)

Ví dụ 2:

Cho hình chóp \(S.ABCD\), \(M\) và \(N\) là hai điểm thuộc cạnh \(AB\) và \(CD\), \(\left( \alpha  \right)\) là mặt phẳng qua \(MN\) và song song với \(SA\).

a) Xác định thiết diện của hình chóp \(S.ABCD\) khi cắt bởi\(\left( \alpha  \right)\).

b) Tìm điều kiện của \(MN\) để thiết diện là một hình thang.

Hướng dẫn:

 

a) Ta có \(\left\{ \begin{array}{l}M \in \left( \alpha  \right) \cap \left( {SAB} \right)\\\left( \alpha  \right)\parallel SA\\SA \subset \left( {SAB} \right)\end{array} \right.\)\( \Rightarrow \left( {SAB} \right) \cap \left( \alpha  \right) = MQ\parallel SA,Q \in SB\).

Trong \(\left( {ABCD} \right)\) gọi \(I = AC \cap MN\)

\(\left\{ \begin{array}{l}I \in MN \subset \left( \alpha  \right)\\I \in AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow I \in \left( \alpha  \right) \cap \left( {SAC} \right)\)

Vậy \(\begin{array}{l}\left\{ \begin{array}{l}I \in \left( {SAC} \right) \cap \left( \alpha  \right)\\\left( \alpha  \right)\parallel SA\\SA \subset \left( {SAC} \right)\end{array} \right.\\ \Rightarrow \left( {SAC} \right) \cap \left( \alpha  \right) = IP\parallel SA,P \in SC\end{array}\)

Từ đó ta có \(\left( \alpha  \right) \cap \left( {SBC} \right) = PQ,\left( \alpha  \right) \cap \left( {SAD} \right) = NP\).

Thiết diện là tứ giác \(MNPQ\).

b) Tứ giác \(MNPQ\) là một hình thang khi \(MN\parallel PQ\) hoặc \(MQ\parallel NP\).

Trường hợp 1:

Nếu \(MQ\parallel NP\) thì ta có \(\left\{ \begin{array}{l}MQ\parallel NP\\MQ\parallel SA\end{array} \right. \Rightarrow SA\parallel NP\)

Mà \(NP \subset \left( {SCD} \right) \Rightarrow SA\parallel \left( {SCD} \right)\) (vô lí).

Trường hợp 2:

Nếu \(MN\parallel PQ\)thì ta có các mặt phẳng \(\left( {ABCD} \right),\left( \alpha  \right),\left( {SBC} \right)\)đôi một cắt nhau theo ba giao tuyến là \(MN,BC,PQ\) nên \(MN\parallel BC\).

Đảo lại nếu \(MN\parallel BC\)thì \(\left\{ \begin{array}{l}MN \subset \left( \alpha  \right)\\BC \subset \left( {SBC} \right)\\PQ = \left( \alpha  \right) \cap \left( {SBC} \right)\end{array} \right.\)

\( \Rightarrow MN\parallel PQ\) nên tứ giác \(MNPQ\) là hình thang.

Vậy để tứ giác \(MNPQ\) là hình thang thì điều kiện là \(MN\parallel BC\).

Bài tập minh họa

Bài 1:

Cho hình chóp \(S.ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(BC\); \({G_1},{G_2}\) tương ứng là trọng tâm các tam giác \(SAB,SBC\).

a) Chứng minh \(AC\parallel \left( {SMN} \right)\).

b) \({G_1}{G_2}\parallel \left( {SAC} \right)\).

c) Tìm giao tuyến của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {B{G_1}{G_2}} \right)\).

Hướng dẫn:

 

a) Ta có \(\left\{ \begin{array}{l}MN\parallel AC\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow MN\parallel \left( {SAC} \right)\).

b) \({G_1},{G_2}\) lần lượt là trọng tâm các tam giác \(SAB\) và \(SBC\) nên

\(\frac{{S{G_1}}}{{SM}} = \frac{{S{G_2}}}{{SN}} = \frac{2}{3} \Rightarrow {G_1}{G_2}\parallel MN\) mà \(MN\parallel AC \Rightarrow {G_1}{G_2}\parallel AC\).

Vậy \(\left\{ \begin{array}{l}{G_1}{G_2}\parallel AC\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow {G_1}{G_2}\parallel \left( {SAC} \right)\).

c) Ta có \(\left\{ \begin{array}{l}B \in \left( {ABC} \right) \cap \left( {B{G_1}{G_2}} \right)\\NM \subset \left( {ABC} \right)\\{G_1}{G_2} \subset \left( {BG1{G_2}} \right)\\MN\parallel {G_1}{G_2}\end{array} \right.\)

\( \Rightarrow \left( {ABC} \right) \cap \left( {B{G_1}{G_2}} \right) = d\parallel MN\parallel {G_1}{G_2},B \in d\).

Bài 2:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một tứ giác lồi. Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\). Xác định thiết diện của hình chóp cắt bởi mặt phẳng qua \(O\), song song với \(AB\) và \(SC\).

Hướng dẫn:

 

Gọi \(\left( P \right)\) là mặt phẳng qua \(O\) và song song với \(AB\) và \(SC\)

Ta có \(\left\{ \begin{array}{l}O \in \left( P \right) \cap \left( {SAC} \right)\\SC \subset \left( {SAC} \right)\\SC\parallel \left( P \right)\end{array} \right.\)

\( \Rightarrow \left( {SAC} \right) \cap \left( P \right) = OM\parallel SC,O \in SA\).

Tương tự

\(\left\{ \begin{array}{l}N \in \left( {SAB} \right) \cap \left( P \right)\\AB \subset \left( {SAB} \right)\\AB\parallel \left( P \right)\end{array} \right.\)

\( \Rightarrow \left( {SAB} \right) \cap \left( P \right) = MN\parallel AB,N \in SB\).

\(\left\{ \begin{array}{l}N \in \left( P \right) \cap \left( {SBC} \right)\\SC \subset \left( {SBC} \right)\\SC\parallel \left( P \right)\end{array} \right. \Rightarrow \left( {SBC} \right) \cap \left( P \right) = NP\parallel SC,\)\(P \in BC\).

Trong \(\left( {ABCD} \right)\)gọi \(Q = PO \cap AD\) thì thiết diện là tứ giác \(MNPQ\).

Tag với:Học chương 2 hình học 11

Bài liên quan:

  • Ôn Chương 2 – Hình học 11
  • Bài 5. Phép chiếu song song và hình biểu diễn của một hình không gian – Chương 2 – Hình học 11
  • Bài 4. Hai mặt phẳng song song – Chương 2 – Hình học 11
  • Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song – Chương 2 – Hình học 11
  • Bài 1. Đại cương về đường thẳng và mặt phẳng – Chương 2 – Hình học 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.