• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 7 - Kết nối / Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

Ngày 01/03/2023 Thuộc chủ đề:Giải bài tập Toán 7 - Kết nối Tag với:GBT Chuong 9 Toan 7 - KN

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)
============

bài 33 Quan hệ giữa ba cạnh của một tam giác

Giải bài 9.10 trang 69 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho các bộ ba đoạn thẳng có độ dài như sau:

a) 2 cm, 3 cm, 5 cm

b) 3 cm, 4 cm, 6 cm

c) 2 cm, 4 cm, 5 cm.

Hỏi bộ ba nào không thể là độ dài ba cạnh của một tam giác? Vì sao? Với mỗi bộ ba còn lại, hãy vẽ một tam giác có độ dài ba cạnh được cho trong bộ ba đó.

Hướng dẫn giải chi tiết Giải bài 9.10

Phương pháp giải

Khi kiểm tra 3 đoạn thẳng có thỏa mãn bất đẳng thức tam giác không, để nhanh gọn, ta chỉ cần kiểm tra tổng độ dài của 2 cạnh nhỏ hơn có lớn hơn độ dài cạnh lớn nhất hay không

Lời giải chi tiết

Theo bất đẳng thức tam giác:

a) Vì 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không thể là độ dài ba cạnh của một tam giác

b) Vì 3+4 > 6 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

* Cách vẽ: + Vẽ độ dài cạnh AB = 6cm.

+ Dùng compa, vẽ cung tròn tâm A bán kính 3 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.

Ta được tam giác ABC cần vẽ.

c) Vì 2+4 > 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của một tam giác

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

* Cách vẽ: + Vẽ độ dài cạnh AB = 5cm.

+ Dùng compa, vẽ cung tròn tâm A bán kính 2 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.

Ta được tam giác ABC cần vẽ.

 

–>

— *****

Giải bài 9.11 trang 69 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

a) Cho tam giác ABC có AB = 1 cm, BC = 7 cm. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên ( cm).

b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên ( cm).

Hướng dẫn giải chi tiết Giải bài 9.11

Phương pháp giải

Sử dụng bất đẳng thức tam giác: Trong một tam giác, độ dài của một cạnh luôn nhỏ hơn tổng độ dài hai cạnh còn lại và lớn hơn hiệu độ dài 2 cạnh còn lại: b – c < a < b + c ( với a, b, c là độ dài 3 cạnh của tam giác)

Kết hợp điều kiện độ dài cạnh CA là số nguyên

Lời giải chi tiết

Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:

7 – 1 < CA < 7 + 1

6 < CA < 8

Mà CA là số nguyên

 CA = 7 cm.

Vậy CA = 7 cm.

b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:

AB + CA > BC

2 + CA > 6

CA > 4 cm

Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)

 CA = 5 cm

Vậy CA = 5 cm.

 

–>

— *****

Giải bài 9.12 trang 69 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho điểm M nằm bên trong tam giác ABC. Gọi N là giao điểm của đường thẳng AM và cạnh BC. (H.9.18)

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB

b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB

c) Chứng minh MA + MB < CA + CB.

Hướng dẫn giải chi tiết Giải bài 9.12

Phương pháp giải

Sử dụng định lí:

+ Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.

Lời giải chi tiết

a) 3 điểm M,N,B không thẳng hàng.

Áp dụng bất đẳng thức tam giác trong tam giác MNB có:

MB < MN + NB

 MA + MB < MA + MN + NB

 MA + MB  < NA + NB ( vì MA + MN = NA) (1)

b) 3 điểm A,N,C không thẳng hàng.

Áp dụng bất đẳng thức tam giác trong tam giác ACN có:

NA < CA + CN

 NA + NB < CA + CN + NB

 NA + NB < CA + CB ( vì CN + NB = CB) (2)

c) Từ (1) và (2) ta có:

MA + MB < NA + NB < CA + CB

Vậy MA + MB < CA + CB

 

–>

— *****

Giải bài 9.13 trang 69 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC.

Hướng dẫn giải chi tiết Giải bài 9.13

Phương pháp giải

Áp dụng quan hệ giữa ba cạnh của tam giác ABD và tam giác ACD.

Lời giải chi tiết

Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)

Áp dụng quan hệ giữa ba cạnh của tam giác ABD, ta có: AD < AB + BD

Áp dụng quan hệ giữa ba cạnh của tam giác ACD, ta có: AD < CD + AC

\(\Rightarrow AD + AD < AB+BD+CD+AC\)

\(\Rightarrow 2AD<AB+BC+AC\) ( vì \(DB+DC=BC\))

\(\Rightarrow\) 2AD < Chu vi tam giác ABC hay AD < (Chu vi tam giác ABC) : 2

Vậy AD nhỏ hơn nửa chu vi tam giác ABC.

 

–>

— *****

Bài liên quan:

  1. Giải bài tập Bài cuối Chương 9 Toán 7 Kết nối
  2. Giải bài tập Bài luyện tập chung trang 83 (Chương 9 Toán 7 Kết nối)
  3. Giải bài tập Bài 35 Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Chương 9 Toán 7 Kết nối)
  4. Giải bài tập Bài 34 Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác (Chương 9 Toán 7 Kết nối)
  5. Giải bài tập Bài luyện tập chung trang 70 (Chương 9 Toán 7 Kết nối)
  6. Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)
  7. Giải bài tập Bài 31 Quan hệ giữa góc và cạnh đối diện trong một tam giác (Chương 9 Toán 7 Kết nối)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Toán 7 – Sách kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.