• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 7 - Kết nối / Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Ngày 01/03/2023 Thuộc chủ đề:Giải bài tập Toán 7 - Kết nối Tag với:GBT Chuong 9 Toan 7 - KN

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)
=============

bài 32 Quan hệ đường vuông góc và đường xiên

Giải bài 9.6 trang 65 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Chiều cao của tam giác ứng với một cạnh của nó có phải là khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đó không?

Hướng dẫn giải chi tiết Giải bài 9.6

Phương pháp giải

Độ dài của đường vuông góc kẻ từ 1 điểm đến 1 đường thẳng là khoảng cách từ điểm đó đến đường thẳng.

Lời giải chi tiết

Chiều cao của tam giác ứng với một cạnh là đường vuông góc kẻ từ đỉnh đến cạnh đối diện nên là khoảng cách từ đỉnh đối diện đến đường thẳng chứa cạnh đối diện.

 

–>

— *****

Giải bài 9.7 trang 65 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông

a) Đỉnh nào cách đều hai điểm A và C?

b) Đỉnh nào cách đều hai đường thẳng AB và AD?

Hướng dẫn giải chi tiết Giải bài 9.7

Phương pháp giải

a) Tìm đỉnh cách đều hai điểm A và C

b) Tìm đỉnh mà đường vuông góc kẻ từ đỉnh đó xuống hai đường thẳng AB và AD bằng nhau.

Lời giải chi tiết

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Vì ABCD là hình vuông nên AB = BC = CD = DA ( tính chất)

a) Ta có: +) BA = BC nên đỉnh B cách đều hai điểm A và C

+) DA = DC nên đỉnh D cách đều hai điểm A và C

Vậy đỉnh B và D cách đều hai điểm A và C

b) +)Vì CB = CD nên khoảng cách từ C đến 2 đường thẳng AB và AD bằng nhau. Do đó đỉnh C cách đều 2 đường thẳng AB và AD.

+) Khoảng cách từ A đến AB bằng khoảng cách từ A đến AD ( bằng 0) nên A cách đều hai đường thẳng AB và AD.

Vậy đỉnh C và đỉnh A cách đều hai đường thẳng AB và AD.

 

–>

— *****

Giải bài 9.8 trang 65 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C. ( H. 9.12)

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M để độ dài AM nhỏ nhất.

b) Chứng minh rằng với mọi điểm M thì AM < AB

Hướng dẫn giải chi tiết Giải bài 9.8

Phương pháp giải

Sử dụng định lí:

+ Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất.

Lời giải chi tiết

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Kẻ AH   BC.

a) Trong các đường xiên và đường vuông góc kẻ từ A điểm nằm ngoài đường thẳng BC đến đường thẳng BC thì đường vuông góc là đường ngắn nhất nên AM ngắn nhất khi M trùng H hay M là chân đường vuông góc kẻ từ A đến BC.

b) Cách 1:

+) Khi M trùng H thì AH < AB ( đường vuông góc luôn nhỏ hơn đường xiên)

+) Khi M nằm giữa B và H

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Góc AMB là góc ngoài tại đỉnh M của tam giác AHM nên = 90 nên  là góc tù nên là góc lớn nhất trong tam giác ABM

Trong tam giác ABM, cạnh AB đối diện với  lớn nhất nên cạnh AB lớn nhất (định lí)

 AM < AB.

+) Khi M nằm giữa C và H

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Góc AMC là góc ngoài tại đỉnh M của tam giác AHM nên = 90 nên  là góc tù nên là góc lớn nhất trong tam giác ACM

Trong tam giác ACM, cạnh AC đối diện với  lớn nhất nên cạnh AC lớn nhất (định lí)

 AM < AC.

Mà AB = AC (gt)

 AM < AB

Vậy AM < AB

Cách 2:

Theo thử thách nhỏ trang 64, khi M thay đổi trên BC, M càng xa H thì AM càng lớn lên. Tuy nhiên, M nằm giữa B và C nên AM không vượt quá AB. Như vậy, AM < AB

 

–>

— *****

Giải bài 9.9 trang 65 SGK Toán 7 Kết nối tri thức tập 2 – KNTT

Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC ( M,N không phải là đỉnh của tam giác) (H. 9.13) . Chứng minh rằng MN < BC.

Giải bài tập Bài 32 Quan hệ đường vuông góc và đường xiên (Chương 9 Toán 7 Kết nối)

Hướng dẫn giải chi tiết

Phương pháp giải

Sử dụng:

+ Góc tù là góc lớn nhất trong tam giác

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất

Lời giải chi tiết

Ta có: Góc NMB là góc ngoài tại đỉnh M của tam giác AMN nên  là góc tù.

Góc BNC là góc ngoài tại đỉnh N của tam giác ABN nên ( định lí)  là góc tù.

Xét tam giác MNB có góc NMB là góc tù nên là góc lớn nhất trong tam giác. Cạnh NB đối diện với góc NMB nên là cạnh lớn nhất trong tam giác. Ta được NM < NB.(1)

Xét tam giác CNB có góc BNC là góc tù nên là góc lớn nhất trong tam giác. Cạnh CB đối diện với góc BNC nên là cạnh lớn nhất trong tam giác. Ta được NB < CB.(2)

Từ (1) và (2)  NM < CB.

Vậy MN < BC.

 

–>

— *****

Bài liên quan:

  1. Giải bài tập Bài cuối Chương 9 Toán 7 Kết nối
  2. Giải bài tập Bài luyện tập chung trang 83 (Chương 9 Toán 7 Kết nối)
  3. Giải bài tập Bài 35 Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác (Chương 9 Toán 7 Kết nối)
  4. Giải bài tập Bài 34 Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác (Chương 9 Toán 7 Kết nối)
  5. Giải bài tập Bài luyện tập chung trang 70 (Chương 9 Toán 7 Kết nối)
  6. Giải bài tập Bài 33 Quan hệ giữa ba cạnh của một tam giác (Chương 9 Toán 7 Kết nối)
  7. Giải bài tập Bài 31 Quan hệ giữa góc và cạnh đối diện trong một tam giác (Chương 9 Toán 7 Kết nối)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Toán 7 – Sách kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.