• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài tập minh họa GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Bài tập minh họa GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Ngày 06/01/2020 Thuộc chủ đề:Toán lớp 10 Tag với:Học bài 2 chương 4 đại số 10

Ví dụ 1:

Giải các hệ bất phương trình sau:

a) \(\left\{ \begin{array}{l}5x – 2 > 4x + 5\\5x – 4 < x + 2\end{array} \right.\)

b) \(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x – 1 \le 2x – 3\\3x < x + 5\\\frac{{5 – 3x}}{2} \le x – 3\end{array} \right.\)

Hướng dẫn:

a) Hệ bất phương trình tương đương với

\(\left\{ \begin{array}{l}5x – 2 > 4x + 5\\5x – 4 < x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 7\\x < \frac{3}{2}\end{array} \right.\)

Suy ra hệ bất phương trình vô nghiệm.

b) Hệ bất phương trình tương đương với

\(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{{22}}{7}\\x < \frac{7}{4}\end{array} \right. \Leftrightarrow x < \frac{7}{4}\)

Vậy hệ bất phương trình có nghiệm là \(x < \frac{7}{4}\)

d) Hệ bất phương trình tương đương với \(\left\{ \begin{array}{l}x \ge 2\\x < \frac{5}{2}\\x \ge \frac{{11}}{5}\end{array} \right. \Leftrightarrow \frac{{11}}{5} \le x \le \frac{5}{2}\)

Vậy hệ bất phương trình có nghiệm là  \(\frac{{11}}{5} \le x \le \frac{5}{2}\).

Ví dụ 2:

Tìm \(m\) để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{m\left( {mx – 1} \right) < 2}\\{m\left( {mx – 2} \right) \ge 2m + 1}\end{array}} \right.\) có nghiệm.

Hướng dẫn:

Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)

Với \(m = 0\) ta có hệ bất phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\) suy ra hệ bất phương trình vô nghiệm

Với \(m \ne 0\) ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)

Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \(\frac{{m + 2}}{{{m^2}}} > \frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\)

Vậy \(m < \frac{1}{3}\) là giá trị cần tìm.


Ví dụ 3 . Tìm $m$ để hệ bất phương trình sau vô nghiệm:
a) $\left\{ \begin{align}
& {{\left( x-3 \right)}^{2}}\ge {{x}^{2}}+7x+1 \\
& 2m\le 8+5x \\
\end{align} \right.$
b) $\left\{ \begin{matrix}
mx+1\le x-1 \\
2\left( x-3 \right)<5\left( x-4 \right) \\
\end{matrix} \right.$

a) Hệ bất phương trình tương đương với: $\left\{ \begin{align}
& x\le \frac{8}{13} \\
& x\ge \frac{2m-8}{5} \\
\end{align} \right.$
Suy ra hệ bất phương trình vô nghiệm $\Leftrightarrow \frac{8}{13}<\frac{2m-8}{5}$ $\Leftrightarrow m>\frac{72}{13}.$
Vậy $m>\frac{72}{13}$ là giá trị cần tìm.
b) Hệ bất phương trình tương đương với $\left\{ \begin{matrix}
\left( m-1 \right)x\le -2 \\
x>\frac{14}{3} \\
\end{matrix} \right.$
+ Với $m=1$ hệ bất phương trình trở thành $\left\{ \begin{matrix}
0x\le -2 \\
x>\frac{14}{3} \\
\end{matrix} \right.$ (hệ bất phương trình vô nghiệm).
+ Với $m>1$ hệ bất phương trình $\left\{ \begin{matrix}
x\le \frac{-2}{m-1} \\
x>\frac{14}{3} \\
\end{matrix} \right.$ suy ra hệ bất phương trình vô nghiệm $\Leftrightarrow \frac{-2}{m-1}\le \frac{14}{3}$ $\Leftrightarrow -6\le 14\left( m-1 \right)$ $\Leftrightarrow m\ge \frac{4}{7}.$
Do đó $m>1$ thì hệ bất phương trình vô nghiệm.
+ Với $m<1$ hệ bất phương trình $\left\{ \begin{matrix}
x\ge \frac{-2}{m-1} \\
x>\frac{14}{3} \\
\end{matrix} \right.$ (hệ bất phương trình luôn có nghiệm).
Vậy giá trị cần tìm là $m\ge 1.$

Ví dụ 4 . Tìm $m$ để hệ bất phương trình $\left\{ \begin{align}
& 2m\left( x+1 \right)\ge x+3 \\
& 4mx+3\ge 4x \\
\end{align} \right.$ có nghiệm duy nhất.

Hệ bất phương trình tương đương với: $\left\{ \begin{matrix}
\left( 2m-1 \right)x\ge 3-2m \\
\left( 4m-4 \right)x\ge -3 \\
\end{matrix} \right.$
Giả sử hệ bất phương trình có nghiệm duy nhất thì $\frac{3-2m}{2m-1}=\frac{-3}{4m-4}$ $\Leftrightarrow 8{{m}^{2}}-26m+15=0$ $\Leftrightarrow m=\frac{3}{4}$ hoặc $m=\frac{5}{2}.$
+ Với $m=\frac{3}{4}$ hệ phương trình trở thành $\left\{ \begin{matrix}
\left( \frac{3}{2}-1 \right)x\ge 3-\frac{3}{2} \\
-x\ge -3 \\
\end{matrix} \right.$ $\Leftrightarrow \left\{ \begin{matrix}
x\ge 3 \\
x\le 3 \\
\end{matrix} \right.$ $\Leftrightarrow x=3.$
+ Với $m=\frac{5}{2}$ hệ phương trình trở thành $\left\{ \begin{matrix}
4x\ge -2 \\
6x\ge -3 \\
\end{matrix} \right.$ $\Leftrightarrow x\ge -\frac{1}{2}.$
Vậy giá trị cần tìm là $m=\frac{3}{4}.$

 

Bài liên quan:

  1. Bài tập minh họa Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn
  2. Bài tập minh họa GIẢI BẤT PHƯƠNG TRÌNH DẠNG \(ax + b < 0\)
  3. Lý thuyết bài Bất phương trình và hệ bất phương trình một ẩn – Đại số 10 chương 4

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.