• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài tập minh họa GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Bài tập minh họa GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Đăng ngày: 06/01/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Toán lớp 10

Ví dụ 1:

Giải các hệ bất phương trình sau:

a) \(\left\{ \begin{array}{l}5x – 2 > 4x + 5\\5x – 4 < x + 2\end{array} \right.\)

b) \(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x – 1 \le 2x – 3\\3x < x + 5\\\frac{{5 – 3x}}{2} \le x – 3\end{array} \right.\)

Hướng dẫn:

a) Hệ bất phương trình tương đương với

\(\left\{ \begin{array}{l}5x – 2 > 4x + 5\\5x – 4 < x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 7\\x < \frac{3}{2}\end{array} \right.\)

Suy ra hệ bất phương trình vô nghiệm.

b) Hệ bất phương trình tương đương với

\(\left\{ \begin{array}{l}6x + \frac{5}{7} < 4x + 7\\\frac{{8x + 3}}{2} < 2x + 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{{22}}{7}\\x < \frac{7}{4}\end{array} \right. \Leftrightarrow x < \frac{7}{4}\)

Vậy hệ bất phương trình có nghiệm là \(x < \frac{7}{4}\)

d) Hệ bất phương trình tương đương với \(\left\{ \begin{array}{l}x \ge 2\\x < \frac{5}{2}\\x \ge \frac{{11}}{5}\end{array} \right. \Leftrightarrow \frac{{11}}{5} \le x \le \frac{5}{2}\)

Vậy hệ bất phương trình có nghiệm là  \(\frac{{11}}{5} \le x \le \frac{5}{2}\).

Ví dụ 2:

Tìm \(m\) để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{m\left( {mx – 1} \right) < 2}\\{m\left( {mx – 2} \right) \ge 2m + 1}\end{array}} \right.\) có nghiệm.

Hướng dẫn:

Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)

Với \(m = 0\) ta có hệ bất phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\) suy ra hệ bất phương trình vô nghiệm

Với \(m \ne 0\) ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)

Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \(\frac{{m + 2}}{{{m^2}}} > \frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\)

Vậy \(m < \frac{1}{3}\) là giá trị cần tìm.


Ví dụ 3. Tìm $m$ để hệ bất phương trình sau vô nghiệm:
a) $\left\{ \begin{align}
& {{\left( x-3 \right)}^{2}}\ge {{x}^{2}}+7x+1 \\
& 2m\le 8+5x \\
\end{align} \right.$
b) $\left\{ \begin{matrix}
mx+1\le x-1 \\
2\left( x-3 \right)<5\left( x-4 \right) \\
\end{matrix} \right.$

a) Hệ bất phương trình tương đương với: $\left\{ \begin{align}
& x\le \frac{8}{13} \\
& x\ge \frac{2m-8}{5} \\
\end{align} \right.$
Suy ra hệ bất phương trình vô nghiệm $\Leftrightarrow \frac{8}{13}<\frac{2m-8}{5}$ $\Leftrightarrow m>\frac{72}{13}.$
Vậy $m>\frac{72}{13}$ là giá trị cần tìm.
b) Hệ bất phương trình tương đương với $\left\{ \begin{matrix}
\left( m-1 \right)x\le -2 \\
x>\frac{14}{3} \\
\end{matrix} \right.$
+ Với $m=1$ hệ bất phương trình trở thành $\left\{ \begin{matrix}
0x\le -2 \\
x>\frac{14}{3} \\
\end{matrix} \right.$ (hệ bất phương trình vô nghiệm).
+ Với $m>1$ hệ bất phương trình $\left\{ \begin{matrix}
x\le \frac{-2}{m-1} \\
x>\frac{14}{3} \\
\end{matrix} \right.$ suy ra hệ bất phương trình vô nghiệm $\Leftrightarrow \frac{-2}{m-1}\le \frac{14}{3}$ $\Leftrightarrow -6\le 14\left( m-1 \right)$ $\Leftrightarrow m\ge \frac{4}{7}.$
Do đó $m>1$ thì hệ bất phương trình vô nghiệm.
+ Với $m<1$ hệ bất phương trình $\left\{ \begin{matrix}
x\ge \frac{-2}{m-1} \\
x>\frac{14}{3} \\
\end{matrix} \right.$ (hệ bất phương trình luôn có nghiệm).
Vậy giá trị cần tìm là $m\ge 1.$

Ví dụ 4. Tìm $m$ để hệ bất phương trình $\left\{ \begin{align}
& 2m\left( x+1 \right)\ge x+3 \\
& 4mx+3\ge 4x \\
\end{align} \right.$ có nghiệm duy nhất.

Hệ bất phương trình tương đương với: $\left\{ \begin{matrix}
\left( 2m-1 \right)x\ge 3-2m \\
\left( 4m-4 \right)x\ge -3 \\
\end{matrix} \right.$
Giả sử hệ bất phương trình có nghiệm duy nhất thì $\frac{3-2m}{2m-1}=\frac{-3}{4m-4}$ $\Leftrightarrow 8{{m}^{2}}-26m+15=0$ $\Leftrightarrow m=\frac{3}{4}$ hoặc $m=\frac{5}{2}.$
+ Với $m=\frac{3}{4}$ hệ phương trình trở thành $\left\{ \begin{matrix}
\left( \frac{3}{2}-1 \right)x\ge 3-\frac{3}{2} \\
-x\ge -3 \\
\end{matrix} \right.$ $\Leftrightarrow \left\{ \begin{matrix}
x\ge 3 \\
x\le 3 \\
\end{matrix} \right.$ $\Leftrightarrow x=3.$
+ Với $m=\frac{5}{2}$ hệ phương trình trở thành $\left\{ \begin{matrix}
4x\ge -2 \\
6x\ge -3 \\
\end{matrix} \right.$ $\Leftrightarrow x\ge -\frac{1}{2}.$
Vậy giá trị cần tìm là $m=\frac{3}{4}.$

 

Tag với:Học bài 2 chương 4 đại số 10

Bài liên quan:

  • Bài tập minh họa Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn
  • Bài tập minh họa GIẢI BẤT PHƯƠNG TRÌNH DẠNG \(ax + b < 0\)
  • Lý thuyết bài Bất phương trình và hệ bất phương trình một ẩn – Đại số 10 chương 4

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.