• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài tập minh họa Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn

Bài tập minh họa Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn

Đăng ngày: 06/01/2020 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Toán lớp 10

Bài tập minh họa Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn


 

Ví dụ 1. Giải và biện luận bất phương trình $\frac{mx-m+1}{x-1}>0.$

Điều kiện xác định: $x\ne 1.$
Bất phương trình tương đương với $\left\{ \begin{matrix}
x>1 \\
mx-m+1>0 \\
\end{matrix} \right.$ $(3)$ hoặc $\left\{ \begin{matrix}
x<1 \\
mx-m+1<0 \\
\end{matrix} \right.$ $(4).$
+ Trường hợp 1: $m>0$ ta có $(3)$ $\Leftrightarrow \left\{ \begin{matrix}
x>1 \\
x>\frac{m-1}{m} \\
\end{matrix} \right.$ và $(4)$ $\Leftrightarrow \left\{ \begin{matrix}
x<1 \\
x<\frac{m-1}{m} \\
\end{matrix} \right.$
Vì $\frac{m-1}{m}<1$ với mọi $m>0$, do đó $\left( 3 \right)$ $\Leftrightarrow x>1$ và $\left( 4 \right)$ $\Leftrightarrow x<\frac{m-1}{m}.$
Suy ra nghiệm của bất phương trình là: $x\in \left( -\infty ;\frac{m-1}{m} \right)\cup \left( 1;+\infty \right).$
+ Trường hợp 2: $m=0$, bất phương trình trở thành: $\frac{1}{x-1}>0$ $\Leftrightarrow x-1>0$ $\Leftrightarrow x>1.$
Suy ra nghiệm của bất phương trình là $x\in \left( 1;+\infty \right).$
+ Trường hợp 3: $m<0$ ta có $(3)$ $\Leftrightarrow \left\{ \begin{matrix}
x>1 \\
x<\frac{m-1}{m} \\
\end{matrix} \right.$ và $(4)$ $\Leftrightarrow \left\{ \begin{matrix}
x<1 \\
x>\frac{m-1}{m} \\
\end{matrix} \right.$
Vì $\frac{m-1}{m}>1$ với mọi $m<0$, nên $\left( 3 \right)$ $\Leftrightarrow 1<x<\frac{m-1}{m}$ và $\left( 4 \right)$ vô nghiệm.
Suy ra nghiệm của bất phương trình là $x\in \left( 1;\frac{m-1}{m} \right).$
Kết luận:
$m>0$ tập nghiệm của bất phương trình là $S=\left( -\infty ;\frac{m-1}{m} \right)\cup \left( 1;+\infty \right).$
$m=0$ tập nghiệm của bất phương trình là $S=\left( 1;+\infty \right).$
$m<0$ tập nghiệm của bất phương trình là $S=\left( 1;\frac{m-1}{m} \right).$

Ví dụ 2. Cho bất phương trình $\sqrt{\left( {{m}^{2}}-4 \right)x-m+3}>2.$
a) Giải bất phương trình khi $m=1.$
b) Tìm $m$ để bất phương trình nghiệm đúng với mọi $x.$

a) Khi $m=1$ bất phương trình trở thành $\sqrt{-3x+2}>2$ $\Leftrightarrow \left\{ \begin{matrix}
-3x+2\ge 0 \\
-3x+2\ge 4 \\
\end{matrix} \right.$ $\Leftrightarrow x\le -\frac{2}{3}.$
Vậy tập nghiệm bất phương trình là $\text{S}=(-\infty ;-\frac{2}{3}].$
b) Điều kiện xác định: $\left( {{m}^{2}}-4 \right)x-m+3\ge 0.$
Giả sử bất phương trình nghiệm đúng với mọi $x$ thì khi đó điều kiện $\left( {{m}^{2}}-4 \right)x-m+3\ge 0$ đúng với mọi $x.$
Suy ra ${{m}^{2}}-4=0$ $\Leftrightarrow m=\pm 2.$
Với $m=2$ ta có bất phương trình trở thành $\sqrt{0.x-2+3}>2$ (vô nghiệm).
Với $m=-2$ ta có bất phương trình trở thành $\sqrt{0.x+2+3}>2$ (đúng với mọi $x$).
Vậy $m=-2$ là giá trị cần tìm.

Ví dụ 3. Cho bất phương trình $\sqrt{x-1}(x-2m+2)\ge 0.$
a) Giải bất phương trình khi $m=2.$
b) Tìm $m$ để mọi $x\in \left[ 2;3 \right]$ đều là nghiệm của bất phương trình đã cho.

a) Khi $m=2$ bất phương trình trở thành $\sqrt{x-1}(x-2)\ge 0.$
Bất phương trình tương đương với $\left[ \begin{matrix}
\sqrt{x-1}=0 \\
\left\{ \begin{align}
& x-1\ge 0 \\
& x-2\ge 0 \\
\end{align} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
\left\{ \begin{matrix}
x\ge 1 \\
x\ge 2 \\
\end{matrix} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 2 \\
\end{matrix} \right.$
Vậy tập nghiệm bất phương trình là $\text{S}=\left\{ 1 \right\}\cup [2;+\infty ).$
b) Bất phương trình tương đương với $\left[ \begin{matrix}
\sqrt{x-1}=0 \\
\left\{ \begin{align}
& x-1\ge 0 \\
& x-2m+2\ge 0 \\
\end{align} \right. \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
\left\{ \begin{align}
& x\ge 1 \\
& x\ge 2m-2 \\
\end{align} \right. \\
\end{matrix} \right.$
+ Trường hợp 1: $2m-2>1$ $\Leftrightarrow m>\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 2m-2 \\
\end{matrix} \right.$
Suy ra tập nghiệm bất phương trình là $S=\left\{ 1 \right\}\cup [2m-2;+\infty ).$
Do đó mọi $x\in \left[ 2;3 \right]$ đều là nghiệm của bất phương trình đã cho $\Leftrightarrow \left[ 2;3 \right]\subset S$ $\Leftrightarrow 2m-2\le 2$ $\Leftrightarrow m\le 2.$
Suy ra $\frac{3}{2}<m\le 2$ thỏa mãn yêu cầu bài toán.
+ Trường hợp 2: $2m-2=1$ $\Leftrightarrow m=\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 1 \\
\end{matrix}\Leftrightarrow x\ge 1 \right. .$
Suy ra $m=\frac{3}{2}$ thỏa mãn yêu cầu bài toán.
+ Trường hợp 3: $2m-2<1$ $\Leftrightarrow m<\frac{3}{2}$: Ta có bất phương trình $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x\ge 1 \\
\end{matrix}\Leftrightarrow x\ge 1 \right. .$
Suy ra $m<\frac{3}{2}$ thỏa mãn yêu cầu bài toán.
Vậy giá trị cần tìm là $m\le 2.$

Tag với:Học bài 2 chương 4 đại số 10

Bài liên quan:

  • Bài tập minh họa GIẢI HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
  • Bài tập minh họa GIẢI BẤT PHƯƠNG TRÌNH DẠNG \(ax + b < 0\)
  • Lý thuyết bài Bất phương trình và hệ bất phương trình một ẩn – Đại số 10 chương 4

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.