• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Học Toán lớp 10 – SGK Cánh diều / Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp – Toán 10 Cánh Diều

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp – Toán 10 Cánh Diều

Ngày 09/07/2022 Thuộc chủ đề:Học Toán lớp 10 – SGK Cánh diều Tag với:Chương 1: Mệnh đề toán học. Tập hợp

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp – Toán 10 Cánh Diều

=======

1.1. Tập hợp

Ví dụ: Cho tập hợp B gồm các số tự nhiên có một chữ số và chi hết cho 3. 

a) Viết tập hợp B theo hai cách: liệt kê các phần tử của tập hợp; chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó.

b) Minh hoạ tạp hợp B bằng biểu đồ ven.

Giải

a) Tập hợp B được viết theo cách liệt kê các phần tử là: B = {0; 3; 6; 9}.

Tập hợp B được viết theo cách chỉ ra tính chất đặc trưng cho các phần tử là: \(B = {\rm{\{ }}x \in N|x \le 9\) và \(x \vdots 3\} \)

b) Tập hợp B được minh hoạ bằng biểu đồ Ven ở hình sau

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 1

Nhận xét 

  • Tập hợp không chứa phần tử nào được gọi là tập hợp rỗng (tập rỗng), kí hiệu là \(\emptyset \).
  • Một tập hợp có thể không có phần tử nào, cũng có thể có một phần tử, có nhiều phần tử, có vô số phần tử.

Chú ý: Khi tập hợp C là tập hợp rỗng, ta viết \(C = \emptyset \) và không được viết là \(C = \left\{ \emptyset  \right\}\). 

1.2. Tập con và tập hợp bằng nhau

a) Tập con

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập con của B và viết là \(A \subset B\). Ta còn đọc là A chứa trong B.

Qui ước: Tập hợp rỗng \(\emptyset \) được coi là tập con của mọi tập hợp.

Chú ý:  \(A \subset B \Leftrightarrow \left( {\forall x,x \in A \Rightarrow x \in B} \right).\)

Khi \(A \subset B\), ta cũng viết \(B \supset A\) (đọc là B chứa A)

Nếu A không phải là tập con của B, ta viết \(A \not\subset B\).

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 2

Ví dụ: Cho hai tập hợp: \(E = \left\{ {x \in R|x \le 1} \right\},F = \left\{ {x \in R|x < 2} \right\}\). Chứng tỏ rằng \(E \subset F\).

Giải

Lấy phần tử x tùy ý thuốc E. Ta có: \(x \le 1\). Vì \(x \le 1\) nên x < 2. Do đó \(x \in F\). 

Vậy \(E \subset F\). 

Ta có các tính chất sau:

  • \(A \subset A\) với mọi tập hợp A;
  • Nếu \(A \subset B\) và \(B \subset C\) thì \(A \subset C\)

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 3

b) Tập hợp bằng nhau

Khi \(A \subset B\) và \(B \subset A\) thì ta nói hai tập hợp A và B bằng nhau, viết là A = B.

Chú ý: \(A = B \Leftrightarrow \left( {\forall x,x \in A \Leftrightarrow x \in B} \right)\). 

Ví dụ: Cho C là tập hợp các tam giác có ba cạnh bằng nhau và D là tập hợp các tam giác có ba góc bằng nhau. Hai tập hợp C và D có bằng nhau hay không?

Giải

Do một tam giác có ba cạnh bằng nhau khi và chỉ khi tam giác đó có ba góc bằng nhau nên hai tập hợp C và D là bằng nhau.

1.3. Giao của hai tập hợp

Tập hợp gồm tất cả các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B được gọi là giao của hai tập hợp A và B, kí hiệu \(A \cap B\).

Vậy \(A \cap B = {\rm{\{ x|x}} \in {\rm{A}}\) và \(x \in {\rm{B\} }}\)

Tập hợp \(A \cap B\) được minh họa bởi phần gạch chéo trong hình sau

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 4

Lưu ý:  \(x \in A \cap B\) khi và chỉ khi \(x \in A\) và \(x \in B\)

Ví dụ: Tìm giao của hai tập hợp trong mỗi trường hợp sau:

a) A = {x \(\in\) N | x là ước của 16}, B = {x \(\in\) N | x là ước của 20}

b) C = {x \(\in\) N | x là bội của 4}, D = {x \(\in\) N | x là bội của 5}

Giải

a) A = {1; 2; 4; 8; 16}, B = {1; 2; 4; 5; 10; 20}. Vậy \(A \cap B = \left\{ {1;2;4} \right\}\) 

Chú ý: A là tập hợp các ước tự nhiên của 16, B là tâp hợp các ước tự nhiên của 20 nên \(A \cap B\) là tập hợp các ước chung tự nhiên của 16 và 20.

b) \(C \cap D\) = {x \(\in\) N | x là bội của 4 và x là bội của 5}

        = {x \(\in\) N | x là bội chung của 4 và 5}

1.4. Hợp của hai tập hợp

Tập hợp gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B được gọi là hợp của hai tập hợp A và B, kí hiệu \(A \cup B\)

Vậy \(A \cup B\) = {x | x \(\in\) A hoặc x \(\in\) B}.

Tập hợp \(A \cup B\) được minh họa bởi phần gạch chéo trong hình sau

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 5

Lưu ý:  \(x \in A \cup B\) khi và chỉ khi \(x \in A\) hoặc \(x \in B\)

Ví dụ:  Cho tập hợp Q các số hữu tỉ và tập hợp I các số vô tỉ. Tìm \(Q \cap I,Q \cup I\) 

Giải

Ta có: \(Q \cap I = \emptyset ,Q \cup I = R\)

1.5. Phần bù. Hiệu của hai tập hợp

– Cho tập hợp A là tập con của tập hợp B. Tập hợp những phần tử thuộc B mà không thuộc A được gọi là phần bù của A trong B, kí hiệu \({C_B}A\)

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 6

– Tập hợp gồm các phần tử thuộc A nhưng không thuộc B được gọi là hiệu của A và B, kí hiệu A\B.

Vậy \(A\backslash B\) = {x | x \(\in\) A và x \(\notin\) B}.

Tập hợp \(A\backslash B\) được minh họa bởi phần gạch chéo trong hình sau

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 7

Ví dụ: Tìm \(A \cap B,A \cup B,A\backslash B,B\backslash A\). 

Giải

Ta có: \(A = \left\{ {0;1;2;3} \right\},B = \left\{ 1 \right\}\) 

Vậy \(A \cap B = \left\{ 1 \right\},A \cup B = \left\{ {0;1;2;3} \right\},A\backslash B = \left\{ {0;2;3} \right\},B\backslash A = \emptyset \) 

1.6. Các tập hợp số

a) Các tập hợp số đã học

Ta đã biết N, Z, Q, R lần lượt là tập hợp số tự nhiên, tập hợp số nguyên, tập hợp số hữu tỉ, tập hợp số thực.

Ta có quan hệ sau: \(N \subset Z \subset Q \subset R\)

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 8

b) Một số tập con thường dùng của tập hợp số thực

Cho a và b là hai số thực với a < b.

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 9

Kí hiệu \( – \infty \) đọc là âm vô cực, kí hiệu \( + \infty \) đọc là dương vô cực; a và b được gọi là đầu mút của các đoạn, khoảng, nửa khoảng.

Chú ý: Ta có thể biểu diễn tập hợp trên trục số bằng cách tô màu phần thuộc tập đó, chẳng hạn đoạn [a; b] có thể biểu diễn ở phần tô màu đỏ như hình sau:

Lý thuyết Bài 2: Tập hợp. Các phép toán trên tập hợp - Toán 10 Cánh Diều 10

Câu 1:  Nêu số phần tử của mỗi tập hợp sau:

\(C = \{ x \in \mathbb{R}|{x^2} < 0\} ,\) \(D = \{ a\} ,E = \{ b;c;d\} ,\)\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\)

Hướng dẫn giải

\(C = \{ x \in \mathbb{R}|{x^2} < 0\} \). Tập hợp C không chứa phần tử nào vì bình phương mọi số thực đều không âm.

\(D = \{ a\} ,\) tập hợp D có duy nhất 1 phần tử là a.

\(E = \{ b;c;d\} ,\) tập hợp E có 3 phần tử.

\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\): tập hợp N có vô số phần tử.

Câu 2:  Cho hai tập hợp:

\(A = \{ n \in N|n\)chia hết cho 3},

\(B = \{ n \in N|n\)chia hết cho 9}.

Chứng tỏ rằng \(B \subset A.\)

Hướng dẫn giải

Lấy n bất kì thuộc tập hợp B.

Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)

\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)

\( \Rightarrow n \in A\)

Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)

Câu 3:  Cho hai tập hợp:

\(A = \left\{ {x \in \mathbb{Z}| – 2 \le x \le 3} \right\}\)

\(B = \{ x \in \mathbb{R}|{x^2} – x – 6 = 0\} \)

Tìm \(A\,{\rm{\backslash }}\,B\) và \(B\,{\rm{\backslash }}\,A\).

Hướng dẫn giải

Ta có: \(A = \left\{ {x \in \mathbb{Z}| – 2 \le x \le 3} \right\} = \{  – 2; – 1;0;1;2;3\} \)

Và \(B = \{ x \in \mathbb{R}|{x^2} – x – 6 = 0\}  = \{  – 2;3\} \)

Khi đó:

Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{  – 1;0;1;2\} \).

 Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)

 

============

Thuộc chủ đề: Học Toán lớp 10 – Cánh diều

Bài liên quan:

  1. Trả lời câu hỏi trong Bài tập cuối chương I trang 19 – Toán 10 Cánh Diều
  2. Trả lời câu hỏi trong bài 2 Tập hợp. Các phép toán trên tập hợp – Toán 10 Cánh Diều
  3. Trả lời câu hỏi trong bài 1 Mệnh đề toán học – Toán 10 Cánh Diều
  4. Lý thuyết Bài tập cuối chương 1 – Toán 10 Cánh Diều
  5. Lý thuyết Bài 1: Mệnh đề toán học – Toán 10 Cánh Diều

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học Toán lớp 10 – SGK Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.