• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 11 - Kết nối / Giải SGK Toán 11 Bài 17: Hàm số liên tục – KNTT

Giải SGK Toán 11 Bài 17: Hàm số liên tục – KNTT

Ngày 25/07/2023 Thuộc chủ đề:Giải bài tập Toán 11 - Kết nối Tag với:GBT Toan 11 Chuong 5 – KNTT

GIẢI CHI TIẾT Giải SGK Toán 11 Bài 17: Hàm số liên tục – SÁCH GIÁO KHOA KẾT NỐI TRI THỨC

================
Giải bài tập Toán lớp 11 Bài 17: Hàm số liên tục
Mở đầu trang 119 Toán 11 Tập 1: Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Mở đầu trang 119 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Lời giải:
Áp dụng định lí: Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) f(b) < 0 thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0.
1. Hàm số liên tục tại một điểm
HĐ1 trang 119 Toán 11 Tập 1: Nhận biết tính liên tục của hàm số tại một điểm
Cho hàm số HĐ1 trang 119 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Tìm giới hạn limx→1fx và so sánh giá trị này với f(1).
Lời giải:
Ta có: f(1) = 2.
limx→1fx=limx→1x2−1x−1=limx→1x−1x+1x−1=limx→1x+1=1+1=2.
Vậy limx→1fx = f(1).
Luyện tập 1 trang 120 Toán 11 Tập 1: Xét tính liên tục của hàm số Luyện tập 1 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 tại điểm x0 = 0.
Lời giải:
Hàm số f(x) xác định trên ℝ, do đó x0 = 0 thuộc tập xác định của hàm số.
Ta có: limx→0+fx=limx→0+x2=02=0; limx→0−fx=limx→0−−x=0.
Do đó, limx→0+fx=limx→0−fx=0, suy ra limx→0fx=0.
Lại có f(0) = 0 nên limx→0fx=f0. Vậy hàm số f(x) liên tục tại x0 = 0.
2. Hàm số liên tục trên một khoảng
HĐ2 trang 120 Toán 11 Tập 1: Cho hai hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 với đồ thị tương ứng như Hình 5.7.
HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Xét tính liên tục của các hàm số f(x) và g(x) tại điểm x=12 và nhận xét về sự khác nhau giữa hai đồ thị.
Lời giải:
+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Hàm số f(x) xác định trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.
Ta có: limx→12+fx=limx→12+1=1; limx→12−fx=limx→12−2x=2⋅12=1.
Suy ra limx→12+fx=limx→12−fx=1, do đó limx→12fx=1
Mà f12=2⋅12=1 nên limx→12fx=f12.
Vậy hàm số f(x) liên tục tại x=12.
+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Hàm số g(x) liên tục trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.
Ta có: limx→12−gx=limx→12−x=12; limx→12+gx=limx→12+1=1
Suy ra limx→12+gx≠limx→12−gx.
Vậy không tồn tại giới hạn của hàm số g(x) tại x=12, do đó hàm số g(x) gián đoạn tại x=12.
+) Quan sát Hình 5.7 ta thấy, đồ thị của hàm số y = f(x) là đường liền trên (0; 1), còn đồ thị của hàm số y = g(x) trên (0; 1) là các đoạn rời nhau.
Luyện tập 2 trang 121 Toán 11 Tập 1: Tìm các khoảng trên đó hàm số fx=x2+1x+2 liên tục.
Lời giải:
Biểu thức x2+1x+2 có nghĩa khi x + 2 ≠ 0 hay x ≠ – 2.
Do đó, tập xác định của hàm số f(x) là (–∞; – 2) ∪ (– 2; +∞).
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 2) và (– 2; +∞).
3. Một số tính chất cơ bản
HĐ3 trang 121 Toán 11 Tập 1: Cho hai hàm số f(x) = x2 và g(x) = – x + 1.
a) Xét tính liên tục của hai hàm số trên tại x = 1.
b) Tính HĐ3 trang 121 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và so sánh L với f(1) + g(1).
Lời giải:
a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.
Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.
b) Ta có: f(x) + g(x) = x2 + (– x + 1) = x2 – x + 1.
Do đó, HĐ3 trang 121 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11=limx→1x2−x+1=12−1+1=1.
Lại có, f(1) = 12 = 1; g(1) = – 1 + 1 = 0, do đó f(1) + g(1) = 1 + 0 = 1.
Vậy L = f(1) + g(1) = 1.
Bài tập
Bài 5.14 trang 122 Toán 11 Tập 1: Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11. Tính g(1).
Lời giải:
Vì hàm số f(x) liên tục tại x = 1 nên hàm số 2f(x) cũng liên tục tại x = 1.
Mà hàm số g(x) liên tục tại x = 1. Do đó, hàm số y = 2f(x) – g(x) liên tục tại x = 1.
Suy ra Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Vì Bài 5.14 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 và f(1) = 2 nên ta có 3 = 2 . 2 – g(1) ⇔ g(1) = 1.
Vậy g(1) = 1.
Bài 5.15 trang 122 Toán 11 Tập 1: Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) fx=xx2+5x+6;
b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Lời giải:
a) fx=xx2+5x+6
Biểu thức xx2+5x+6 có nghĩa khi x2 + 5x + 6 ≠ 0 ⇔ (x + 2)(x + 3) ≠ 0 Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Do đó, tập xác định của hàm số f(x) là ℝ {– 3; – 2} = (–∞; – 3) ∪ (– 3; – 2) ∪ (– 2; +∞).
Vì f(x) là hàm phân thức hữu tỉ nên nó liên tục trên tập xác định.
Vậy hàm số f(x) liên tục trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞).
b) Bài 5.15 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Tập xác định của hàm số là ℝ.
+) Nếu x < 1, thì f(x) = 1 + x2.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (–∞; 1).
+) Nếu x > 1, thì f(x) = 4 – x.
Đây là hàm đa thức nên có tập xác định là ℝ.
Vậy nó liên tục trên (1; +∞).
+) Ta có: limx→1+fx=limx→1+4−x=4−1=3;
limx→1−fx=limx→1−1+x2=1+12=2.
Suy ra limx→1+fx≠limx→1−fx, do đó không tồn tại giới hạn của f(x) tại x = 1.
Khi đó, hàm số f(x) không liên tục tại x = 1.
Vậy hàm số đã cho liên tục trên các khoảng (–∞; 1), (1; +∞) và gián đoạn tại x = 1.
Bài 5.16 trang 122 Toán 11 Tập 1 :Tìm giá trị của tham số m để hàm sốliên tục trên ℝ.
Bài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
Lời giải:
Tập xác định của hàm số là ℝ.
+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).
+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).
Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).
Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi limx→0fx=f0⇔limx→0+fx=limx→0−fx=f0 (1).
Lại có: limx→0+fx=limx→0+sinx=0; f(0) = sin 0 = 0; limx→0−fx=limx→0−−x+m=m .
Khi đó, (1) ⇔ m = 0.
Vậy m = 0 thì thỏa mãn yêu cầu bài toán.
Bài 5.17 trang 122 Toán 11 Tập 1: Một bảng giá cước taxi được cho như sau:






Giá mở cửa
(0,5 km đầu)

Giá cước các km tiếp theo đến 30 km

Giá cước từ km thứ 31

10 000 đồng

13 500 đồng

11 000 đồng

a) Viết công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển.
b) Xét tính liên tục của hàm số ở câu a.
Lời giải:
a) Gọi x (km, x > 0) là quãng đường khách di chuyển và y (đồng) là số tiền khách phải trả theo quãng đường di chuyển x.
Với x ≤ 0,5, ta có y = 10 000.
Với 0,5 < x ≤ 30, ta có: y = 10 000 + 13 500(x – 0,5) hay y = 13 500x + 3 250.
Với x > 30, ta có: y = 10 000 + 13 500 . 29,5 + 11 000(x – 30) hay y = 11 000x + 78 250.
Vậy công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển là
Bài 5.17 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11
b) +) Với 0 < x < 0,5 thì y = 10 000 là hàm hằng nên nó liên tục trên (0; 0,5).
+) Với 0,5 < x < 30 thì y = 13500x + 3 250 là hàm đa thức nên nó liên tục trên (0,5; 30).
+) Với x > 30 thì y = 11 000x + 78 250 là hàm đa thức nên nó liên tục trên (30; +∞).
+) Ta xét tính liên tục của hàm số tại x = 0,5 và x = 30.
– Tại x = 0,5, ta có y(0,5) = 10 000;
limx→0,5−y=limx→0,5−10000=10000;
limx→0,5+y=limx→0,5+13500x+3250= 13 500 . 0,5 + 3 250 = 10 000.
Do đó, limx→0,5−y=limx→0,5+y=limx→0,5y=y0,5 nên hàm số liên tục tại x = 0,5.
– Tại x = 30, ta có: y(30) = 13 500 . 30 + 3 250 = 408 250;
limx→30−y=limx→30−13500x+3250 = 13 500 . 30 + 3 250 = 408 250;
limx→30+y=limx→30+11000x+78250 = 11 000 . 30 + 78 250 = 408 250.
Do đó, limx→30−y=limx→30+y=limx→30y=y30 nên hàm số liên tục tại x = 30.
Vậy hàm số ở câu a liên tục trên (0; +∞).

==== ~~~~~~ ====

=============
THUỘC: Giải bài tập Toán 11 – Kết nối TRI THỨC

Bài liên quan:

  1. Giải SGK Toán 11: Bài tập cuối Chương 5 – KNTT
  2. Giải SGK Toán 11 Bài 16: Giới hạn của hàm số – KNTT
  3. Giải SGK Toán 11 Bài 15: Giới hạn của dãy số – KNTT

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Toán 11 – SGK Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.