• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 - Kết nối / Giải SBT Bài 24 Chương 8 – SBT Toán 10 KNTT

Giải SBT Bài 24 Chương 8 – SBT Toán 10 KNTT

Ngày 11/03/2023 Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Giai SBT Toan 10 chuong 8 KN

GIẢI CHI TIẾT Giải SBT Bài 24 Chương 8 – SBT Toán 10 KNTT
============

Giải bài 8.5 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Có bao nhiêu cách xếp 6 lá thư khác nhau vào 6 chiếc phong bì khác nhau (mỗi lá thư vào trong một phong bì?

Hướng dẫn giải chi tiết Bài 8.5

Phương pháp giải

Số cách xếp 6 lá thư vào 6 phong bì chính là số hoán vị của 6

Lời giải chi tiết

Vậy Số cách xếp 6 lá thư là: 6! = 720 cách

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.6 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Có 12 thí sinh tham gia một cuộc thi âm nhạc. Hỏi có bao nhiêu cách trao ba giải cao nhất Nhất, Nhì và Ba của cuộc thi cho các thi sinh?

Hướng dẫn giải chi tiết Bài 8.6

Phương pháp giải

Mỗi cách trao giải Nhất, Nhì, Ba của cuộc thi là một cách chọn 3 thí sinh (có xếp thứ tự) từ 12 thí sinh. Nói cách khác, số cách trao giải là số chỉnh hợp chập 3 của 12.

Lời giải chi tiết

Số cách trao giải là:

 \(A_{12}^3 = 1320\)(cách)

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.7 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Minh có 4 vé xem bóng đá và muốn mời thêm các bạn đi xem cùng. Nhưng Minh có tới 6 người bạn thích bóng đá. Hỏi Minh có bao nhiêu cách mời 3 bạn để đi xem bóng đá cùng mình?

Hướng dẫn giải chi tiết Bài 8.7

Phương pháp giải

 Số cách chọn ra 3 người từ 6 người là số tổ hợp chập 3 của 6.

Lời giải chi tiết

Vậy Minh có số cách để mời 3 bạn đi xem bóng đá cùng là:

 \(C_5^3 = 20\)(cách)

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.8 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Ông An quyết định sơn ngôi nhà 4 tầng mới xây của mình bằng gam màu xanh. Hãng sơn mà ông An chọn có gam màu xanh với 10 màu xanh có mức độ đậm nhạt khác nhau:

a) Ông An có bao nhiêu cách sơn nhà sao cho 4 tầng khác nhau có màu khác nhau?

b) Sau khi tham khảo ý kiến của mọi người, ông điều chỉnh ý định ban đầu và bây giờ muốn các tầng sơn màu nhạt dần từ thấp lên cao. Số cách sơn nhà theo yêu cầu mới là bao nhiêu?

Hướng dẫn giải chi tiết Bài 8.8

Phương pháp giải

a) Mỗi cách sơn là mỗi cách chọn ra 4 màu khác nhau (có sắp xếp thứ tự ) từ 10 màu sơn.

b) Để sơn 4 tầng từ đậm nhất đến nhạt nhất từ thấp lên cao, tức là mỗi bộ 4 màu sơn thì chỉ có 1 cách sơn. Tức là chỉ cần chọn ra 4 màu khác nhau từ 10 màu sơn. 

Lời giải chi tiết

a) Mỗi cách sơn là mỗi cách chọn ra 4 màu khác nhau (có sắp xếp thứ tự ) từ 10 màu sơn.

Do đó số cách sơn nhà là số chỉnh hợp chập 4 của 10:

 \(A_{10}^4 = 5040\)

b) Để sơn 4 tầng từ đậm nhất đến nhạt nhất từ thấp lên cao, tức là mỗi bộ 4 màu sơn thì chỉ có 1 cách sơn. Tức là chỉ cần chọn ra 4 màu khác nhau từ 10 màu sơn.

Vậy số cách sơn nhà theo kiểu mới là số tổ hợp chập 4 của 10, là:

 \(C_{10}^4 = 210\)

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.9 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Một nhóm hành khách, gồm 2 nam và 3 nữ, lên một chiếc xe buýt. Trên xe có 10 ghế trống, trong đó có 5 ghế cạnh cửa sổ.

a) Hỏi họ có bao nhiêu cách ngồi?

b) Các hành khách nữ mong muốn ngồi cạnh cửa sổ. Hỏi số cách ngồi của họ là bao nhiêu?

Hướng dẫn giải chi tiết Bài 8.9

Phương pháp giải

Việc xếp chỗ cho khách được thực hiện theo 2 công đoạn:

Bước 1: Xếp chỗ cho các hành khách nữ

Bước 2: Xếp chỗ cho các hành khách nữ

Lời giải chi tiết

a) Chọn ra 5 ghế từ 10 ghế và có sắp xếp thứ tự nên số cách ngồi của họ là:

\(A_{10}^5 = 30240\)

b) 

– Ta cần xếp chỗ cho 3 hành khách nữ vào 5 ghế cạnh cửa sổ có số cách sắp xếp là:  \(A_5^3 = 60\)cách

– Ta xếp 2 khách nam vào vị trí bất kì trong 10 -3 =7 ghế còn lại.  Số cách sắp xếp là:  \(A_7^2 = 42\)cách

Vậy có số cách xếp chỗ là: 60. 42= 2520 cách

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.10 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Để chuẩn bị cho buổi biểu diễn, 3 anh hề phải chọn trang phục biểu diễn cho mình gồm mũ, tóc giả, mũi và quần áo. Đoàn xiếc có 10 chiếc mũ, 6 bộ tóc giả, 5 cái mũi hề và 8 bộ quần áo hề. Hỏi các anh hề có bao nhiêu cách chọn trang phục biểu diễn?

Hướng dẫn giải chi tiết Bài 8.10

Phương pháp giải

Để chọn trang phục biểu diễn, các anh hề có thể thực hiện 4 công đoạn là

Chọn mũ => chọn tóc giả => Chọn mũi giả => Chọn quần áo

Lời giải chi tiết

+ Chọn mũ: Có 3 anh hề (khác nhau) và 10 chiếc mũ nên số cách chọn 3 chiếc mũ từ 10 chiếc mũ là: \(A_{10}^3 = 720\)

 Tương tự số cách chọn tóc giả là: \(A_6^3 = 120\) , chọn mũi hề là \(A_5^3 = 60\), chọn quần áo là \(A_8^3 = 336\)

 Vậy theo quy tắc nhân, số cách chọn trang phục của 3 anh hề là:

720. 120. 60. 336= 1 741 824 000 cách

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.11 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

Trong các số tự nhiên từ 1 đến 999 999, có bao nhiêu số chứa đúng một chữ số 1 và đúng một chữ số 2?

Hướng dẫn giải chi tiết Bài 8.11

Phương pháp giải

Gọi số cần tìm có dạng \(\overline {abcdef} \), trong đó \(a,b,c,d,e,f\) nhận một trong các giá trị 0;1;2;…;9. Chẳng hạn số \(\overline {001257} \) được hiểu là số 1257.

Lời giải chi tiết

Để tạo thành số thỏa mãn yêu cầu đề bài ta cần:

+ Bước 1: Chọn ra 2 kí hiệu trong 6 kí hiệu: a, b, c, d, e, f để thay bằng các số 1; 2.

Do thứ tự 1; 2 khác nhau sẽ tạo thành số khác nhau nên số cách chọn là số chỉnh hợp chập 2 của 6, là \(A_6^2 = 30\) (cách) 

+ Bước 2: Thay 4 kí hiệu còn lại bằng các số còn lại 0;3;4;…;9 (có thể giống nhau)

Còn lại 8 số. Mỗi kí hiệu đều có 8 cách chọn. Do đó 4 số này có tổng cộng: 8.8.8.8=4 096 (cách)

Theo quy tắc nhân, số các số từ 1 đến 999 999 thỏa mãn là:

30 . 4 096 = 122 880 (số) 

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

Giải bài 8.12 trang 55 SBT Toán 10 Kết nối tri thức tập 2 – KNTT

a) Có bao nhiêu cách sắp xếp các chữ cái của từ “KHIÊNG” thành một dãy kí tự gồm 6 chữ cái khác nhau (có thể là vô nghĩa)?

b) Cùng câu hỏi như a) nhưng yêu cầu hai chữ cái đầu tiên là các phụ âm?

c) Giống câu hỏi a) nhưng yêu cầu các phụ âm phải đứng liên tiếp với nhau.

Hướng dẫn giải chi tiết Bài 8.12

Phương pháp giải

a) Để sắp xếp 6 chữ cái theo 1 thứ tự bất kì là 1 hoán vị của 6 chữ cái này.

b) Từ “KHIÊNG” có 4 phụ âm là K, H, N và G.

c) 4 phụ âm phải đứng liên tiếp nhau do đó có 3 trường hợp:

– TH1: vị trí các phụ âm từ trái qua phải là 1, 2, 3, 4.

– TH2: vị trí các phụ âm từ trái qua phải là 2, 3, 4, 5.

– TH3: vị trí các phụ âm từ trái qua phải là 3, 4, 5, 6.

Lời giải chi tiết

a)  Từ KHIÊNG gồm 6 chữ cái khác nhau là K, H, I, Ê, N, G.

Để sắp xếp 6 chữ cái theo 1 thứ tự bất kì là 1 hoán vị của 6 chữ cái này.

Số cách sắp xếp các chữ cái của từ “KHIÊNG” thành một dãy kí tự gồm 6 chữ cái khác nhau là:

6!= 720 cách

b) Từ “KHIÊNG” có 4 phụ âm là K, H, N và G.

Chọn 2 trong 4 phụ âm (để xếp vào 2 vị trí đầu tiên) ta có:

 \(A_4^2 = 12\) (cách)

Số cách sắp xếp 4 chữ cái còn lại vào 4 vị trí tiếp theo là: 4! = 24 cách

Theo quy tắc nhân, số cách sắp xếp cần tìm là:

   12. 24 = 288 cách.

c) 4 phụ âm phải đứng liên tiếp nhau do đó có 3 trường hợp:

– TH1: vị trí các phụ âm từ trái qua phải là 1, 2, 3, 4.

– TH2: vị trí các phụ âm từ trái qua phải là 2, 3, 4, 5.

– TH3: vị trí các phụ âm từ trái qua phải là 3, 4, 5, 6.

Trong mỗi trường hợp:

 Số cách xếp 4 phụ âm vào 4 vị trí đã chọn là: 4! = 24 cách

Số cách xếp 2 nguyên âm vào 2 vị trí còn lại là:  2! = 2

Vậy mỗi trường hợp có số cách sắp xếp thỏa mãn là:

24 . 2= 48 cách

Vậy trong mỗi trường hợp, ta đều có 48 cách sắp xếp.

Tổng số cách sắp xếp là:   48+ 48+ 48= 144 cách.

 

GIẢI SBT Toán 10 Kết nối tri thức Chương 8 Bài 24

=========

THUỘC: Giải sách bài tập toán 10 – Kết nối

Bài liên quan:

  1. Giải SBT Bài CUỐI Chương 8 – SBT Toán 10 KNTT
  2. Giải SBT Bài 23 Chương 8 – SBT Toán 10 KNTT
  3. Giải SBT Bài 25 Chương 8 – SBT Toán 10 KNTT

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.