• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Chuyên đề Toán 10 – Chân trời / Giải Bài tập cuối chuyên đề 2 – Chuyên đề Toán 10 (Chân trời)

Giải Bài tập cuối chuyên đề 2 – Chuyên đề Toán 10 (Chân trời)

Ngày 27/03/2023 Thuộc chủ đề:Giải Chuyên đề Toán 10 – Chân trời Tag với:CHUYEN DE 2 TOAN 10 CT

Giải Bài tập cuối chuyên đề 2 – Chuyên đề Toán 10 (Chân trời)
===========

Giải bài 1 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh rằng các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\).

a) \({1^3} + {2^3} + {3^3} + … + {n^3} = \frac{{{n^2}{{(n + 1)}^2}}}{4}\)

b) \(1.4 + 2.7 + 3.10 + … + n(3n + 1) = n{(n + 1)^2}\)

c) \(\frac{1}{{1.3}} + \frac{1}{{3.5}} + \frac{1}{{5.7}} + … + \frac{1}{{(2n – 1)(2n + 1)}} = \frac{n}{{2n + 1}}\)

Quy nạp: Chứng minh mệnh đề đúng với \(n \ge p\) thì:

Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

Lời giải chi tiết

a) Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \({1^3} = \frac{{{1^2}{{(1 + 1)}^2}}}{4}\)

Như vậy đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

\({1^3} + {2^3} + {3^3} + … + {k^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4}\)

Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

\({1^3} + {2^3} + {3^3} + … + {k^3} + {(k + 1)^3} = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\)

Sử dụng giả thiết quy nạp, ta có

\(\begin{array}{l}{1^3} + {2^3} + {3^3} + … + {k^3} + {(k + 1)^3} = \frac{{{k^2}{{(k + 1)}^2}}}{4} + {(k + 1)^3}\\ = {(k + 1)^2}\left( {\frac{{{k^2}}}{4} + k + 1} \right) = \frac{{{{(k + 1)}^2}({k^2} + 4k + 4)}}{4}\\ = \frac{{{{(k + 1)}^2}{{(k + 2)}^2}}}{4}\end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

b) Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \(1.4 = 1.{(1 + 1)^2}\)

Như vậy đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

\(1.4 + 2.7 + 3.10 + … + k(3k + 1) = k{(k + 1)^2}\)

Ta sẽ chứng minh đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh

\(1.4 + 2.7 + 3.10 + … + k(3k + 1) + (k + 1)(3(k + 1) + 1) = (k + 1){(k + 2)^2}\)

Sử dụng giả thiết quy nạp, ta có

\(\begin{array}{l}1.4 + 2.7 + 3.10 + … + k(3k + 1) + (k + 1)(3(k + 1) + 1)\\ = k{(k + 1)^2} + (k + 1)(3k + 4) = (k + 1)\left[ {k(k + 1) + 3k + 4} \right]\\ = (k + 1)({k^2} + 4k + 4) = (k + 1){(k + 2)^2}\end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

c) Ta chứng minh bằng phương pháp quy nạp

Với \(n = 1\) ta có \({S_1} = \frac{1}{3}\)

Vậy đẳng thức đúng với \(n = 1\)

Giải sử đẳng thức đúng với \(n = k\) tức là ta có \({S_k} = \frac{k}{{2k + 1}}\)

Ta chứng minh đẳng thức đúng với \(n = k + 1\) tức là chứng minh  \({S_{k + 1}} = \frac{{k + 1}}{{2(k + 1) + 1}}\)

Thật vậy, ta có

\(\begin{array}{l}{S_{k + 1}} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + … + \frac{1}{{(2k – 1)(2k + 1)}} + \frac{1}{{(2k + 1)(2k + 3)}}\\ = \frac{k}{{2k + 1}} + \frac{1}{{(2k + 1)(2k + 3)}} = \frac{{k(2k + 3) + 1}}{{(2k + 1)(2k + 3)}} = \frac{{2{k^2} + 3k + 1}}{{(2k + 1)(2k + 3)}}\\ = \frac{{(k + 1)(2k + 1)}}{{(2k + 1)(2k + 3)}} = \frac{{k + 1}}{{2k + 3}}\end{array}\)

Vậy đẳng thức đúng với mọi số tự nhiên \(n \ge 1\).

Giải bài 2 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh rằng với mọi \(n \in \mathbb{N}*\):

a) \({3^n} – 1 – 2n\) chia hết cho 4.

b) \({7^n} – {4^n} – {3^n}\) chia hết cho 12.

Lời giải chi tiết

a) Ta chứng minh bằng phương pháp quy nạp

Với \(n = 1\) ta có \({3^1} – 1 – 2 = 0 \vdots 4\)

Vậy khẳng định đúng với \(n = 1\)

Giải sử khẳng định đúng với \(n = k\) tức là ta có \({3^k} – 1 – 2k\) chia hết cho 4

Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh  \({3^{k + 1}} – 1 – 2(k + 1)\) chia hết cho 4

Sử dụng giả thiết quy nạp, ta có

\({3^{k + 1}} – 1 – 2(k + 1) = {3^{k + 1}} – 3 – 2k = 3.\left( {{3^k} – 1 – 2k} \right) + 4k\) chia hết cho 4.

Vậy khẳng định đúng với mọi \(n \in \mathbb{N}*\).

b) Ta chứng minh bằng phương pháp quy nạp

Với \(n = 1\) ta có \({7^1} – {4^1} – {3^1} = 0 \vdots 12\)

Vậy khẳng định đúng với \(n = 1\)

Giải sử khẳng định đúng với \(n = k\) tức là ta có \({7^k} – {4^k} – {3^k}\) chia hết cho 12

Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh  \({7^{k + 1}} – {4^{k + 1}} – {3^{k + 1}}\) chia hết cho 12

Sử dụng giả thiết quy nạp, lưu ý \(k \ge 1\), ta có

\({7^{k + 1}} – {4^{k + 1}} – {3^{k + 1}} = {7.7^k} – {4.4^k} – {3.3^k} = 7\left( {{7^k} – {4^k} – {3^k}} \right) + {3.4^k} + {4.3^k}\) chia hết cho 12.

Vậy khẳng định đúng với mọi \(n \in \mathbb{N}*\).

 

Giải bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh rằng \({8^n} > {n^3}\) với mọi \(n \in \mathbb{N}*\).

Lời giải chi tiết

Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \({8^1} > {1^3}\)

Như vậy bất đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \({8^k} > {k^3}\)

Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \({8^{k + 1}} > {(k + 1)^3}\)

Sử dụng giả thiết quy nạp, ta có

\({8^{k + 1}} > 8{k^3} = {k^3} + 3{k^3} + 3{k^3} + {k^3} > {k^3} + 3{k^2} + 3k + 1 = {(k + 1)^3}\)

Vậy bất đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

 

Giải bài 4 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh rằng bất đẳng thức \(1 + \frac{1}{2} + \frac{1}{3} + … + \frac{1}{n} \le \frac{{n + 1}}{2}\) đúng với mọi \(n \in \mathbb{N}*\).

Lời giải chi tiết

Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \(1 = \frac{{1 + 1}}{2}\)

Như vậy bất đẳng thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \(1 + \frac{1}{2} + \frac{1}{3} + … + \frac{1}{k} \le \frac{{k + 1}}{2}\)

Ta sẽ chứng minh bất đẳng thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \(1 + \frac{1}{2} + \frac{1}{3} + … + \frac{1}{k} + \frac{1}{{k + 1}} \le \frac{{k + 2}}{2}\)

Sử dụng giả thiết quy nạp, với lưu ý \(k \ge 1\) ta có

\(1 + \frac{1}{2} + \frac{1}{3} + … + \frac{1}{k} + \frac{1}{{k + 1}} \le \frac{{k + 1}}{2} + \frac{1}{{k + 1}} \le \frac{{k + 1}}{2} + \frac{1}{2} = \frac{{k + 2}}{2}\)

Vậy bất đẳng thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi \(n \in \mathbb{N}*\).

Giải bài 5 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Với một bình rỗng có dung tích 2l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:

Bước 1: Rót 1l nước vào bình, rồi rót đi một nửa lượng nước trong bình.

Bước 2: Rót 1l nước vào bình, rồi lại rót đi một nửa lượng lước trong bình.

Cứ như vậy, thực hiện bước 3, 4, …

Kí hiệu \({a_n}\) là lượng nước có tron bình sau bước n \((n \in \mathbb{N}*)\)

a) Tính \({a_1},{a_2},{a_3}\). Từ đó dự đoán công thức tính \({a_n}\) với \(n \in \mathbb{N}*\)

b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.

Lời giải chi tiết

a)

  \(\begin{array}{l}{a_1} = \frac{{2 + 1}}{2} = \frac{3}{2} = \frac{{{2^1} + 1}}{{{2^1}}};\\{a_2} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4} = \frac{{{2^2} + 1}}{{{2^2}}};\\{a_3} = \frac{{\frac{5}{4} + 1}}{2} = \frac{9}{8} = \frac{{{2^3} + 1}}{{{2^3}}}\end{array}\).

Từ đó ta dự đoán \({a_n} = \frac{{{2^n} + 1}}{{{2^n}}}\) với \(n \in \mathbb{N}*\)

b)

Ta chứng minh bằng quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \({a_1} = \frac{{{2^1} + 1}}{{{2^1}}}\)

Như vậy công thức đúng cho trường hợp \(n = 1\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có: \({a_k} = \frac{{{2^k} + 1}}{{{2^k}}}\)

Ta sẽ chứng minh công thức đúng với \(n = k + 1\), nghĩa là cần chứng minh \({a_{k + 1}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\)

Sử dụng giả thiết quy nạp, ta có

\({a_{k + 1}} = \frac{{{a_k} + 1}}{2} = \frac{{\frac{{{2^k} + 1}}{{{2^k}}} + 1}}{2} = \frac{{\frac{{{2^k} + 1 + {2^k}}}{{{2^k}}}}}{2} = \frac{{{{2.2}^k} + 1}}{{{2^{k + 1}}}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\)

Vậy công thức đúng với \(n = k + 1\).

Theo nguyên lí quy nạp toán học, công thức đúng với mọi \(n \in \mathbb{N}*\).

Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Tìm hệ số của \({x^3}\) trong khai triển của biểu thức sau:

a) \({(1 – 3x)^8}\)

b) \({\left( {1 + \frac{x}{2}} \right)^7}\)

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{(ax)^k}{b^{n – k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{a^k}{b^{n – k}}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có:

\({(1 – 3x)^8} = C_8^0 + C_9^1\left( { – 3x} \right) + … + C_8^k{\left( { – 3x} \right)^k} + … + C_8^8{\left( { – 3x} \right)^8}\)

Số hạng chứa \({x^2}\) ứng với \(9 – k = 2\) hay \(k = 7\). Do đó hệ số của \({x^2}\)  là

\(C_9^7{3^2}{2^7} = 36.9.128 = 41472\)

b) Theo công thức nhị thức Newton, ta có:

\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + … + C_9^k{\left( {3x} \right)^{9 – k}}{2^k} + … + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)

Số hạng chứa \({x^2}\) ứng với \(9 – k = 2\) hay \(k = 7\). Do đó hệ số của \({x^2}\)  là

\(C_9^7{3^2}{2^7} = 36.9.128 = 41472\)

Giải bài 7 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Tìm hệ số của \({x^5}\) trong khai triển của: \((2x + 3){(x – 2)^6}\)

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{(ax)^k}{b^{n – k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{a^k}{b^{n – k}}\)

Lời giải chi tiết

Cách 1: Sử dụng tam giác Pascal, ta có:

\(\begin{array}{l}{(x – 2)^6} = {x^6} + 6{x^5}\left( { – 2} \right) + 15{x^4}{\left( { – 2} \right)^2} + 20{x^3}{\left( { – 2} \right)^3} + 15{x^2}{\left( { – 2} \right)^4} + 6x{\left( { – 2} \right)^5} + {\left( { – 2} \right)^6}\\ = {x^6} – 12{x^5} + 60{x^4} – 160{x^3} + 240{x^2} – 192x + 64\end{array}\)

\((2x + 3){(x – 2)^6} = (2x + 3)\left( {{x^6} – 12{x^5} + 60{x^4} – 160{x^3} + 240{x^2} – 192x + 64} \right)\)

Do đó hệ số của \({x^5}\)  là: \(2.60 + 3.( – 12) = 84\)

Cách 2: Theo công thức nhị thức Newton, ta có:

\({(x – 2)^6} = C_6^0{x^6} + C_6^1{x^5}\left( { – 2} \right) + … + C_6^k{x^{6 – k}}{\left( { – 2} \right)^k} + … + C_6^6{\left( { – 2} \right)^6}\)

\(\begin{array}{l}(2x + 3){(x – 2)^6} = 2C_6^0{x^7} + 2C_6^1{x^6}\left( { – 2} \right) + … + 2C_6^k{x^{7 – k}}{\left( { – 2} \right)^k} + … + 2C_6^6x{\left( { – 2} \right)^6}\\ + 3\left[ {C_6^0{x^6} + C_6^1{x^5}\left( { – 2} \right) + … + C_6^k{x^{6 – k}}{{\left( { – 2} \right)}^k} + … + C_6^6{{\left( { – 2} \right)}^6}} \right]\\ = 2C_6^0{x^7} + \left[ {2\left( { – 2} \right)C_6^1 + 3C_6^0} \right]{x^6} + … + \left[ {2{{\left( { – 2} \right)}^k}C_6^k + 3{{\left( { – 2} \right)}^{k – 1}}C_6^{k – 1}} \right]{x^{7 – k}} + \left[ {2{{\left( { – 2} \right)}^6}C_6^6 + 3C_6^5{{\left( { – 2} \right)}^5}} \right]x + 3C_6^6{\left( { – 2} \right)^6}.\end{array}\)

Số hạng chứa \({x^5}\) ứng với \(7 – k = 5\)hay \(k = 2\). Do đó hệ số của \({x^5}\)  là

\(2{\left( { – 2} \right)^2}C_6^2 + 3{\left( { – 2} \right)^1}C_6^1 = 84\)

Giải bài 8 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

a) Tìm ba số hạng đầu tiên trongg khai triển của \({(1 + 2x)^6}\), các số hạng được viết theo thứ tự số mũ x tăng dần.

b) Sử dụng kết quả trên, hãy tính giá trị gần đúng của \(1,{02^6}\)

Lời giải chi tiết

a) Sử dụng tam giác Pascal, ta có:

\(\begin{array}{l}{(1 + 2x)^6} = 1 + 6\left( {2x} \right) + 15{\left( {2x} \right)^2} + 20{\left( {2x} \right)^3} + 15{\left( {2x} \right)^4} + 6x{\left( {2x} \right)^5} + {\left( {2x} \right)^6}\\ = 1 + 12x + 60{x^2} + 160{x^3} + 240{x^4} + 192{x^5} + 64{x^6}\end{array}\)

3 số hạng đầu tiên trong khai triển là: \(1;12x;60{x^2}.\)

b) Ta có: \(1,{02^6} = {\left( {1 + 2.0,01} \right)^6} \approx 1 + 12.0,01 + 60.0,{01^2} = 1,126\)

Giải bài 9 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Trong khai triển của biểu thức \({(3x – 4)^{15}}\) thành đa thức, hãy tính tổng các hệ số của đa thức nhận được

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)

Lời giải chi tiết

Giả sử khai triển của biểu thức \({(3x – 4)^{15}}\) thành đa thức là:

\({(3x – 4)^{15}} = {a_0} + {a_1}x + {a_2}{x^2} + … + {a_{15}}{x^{15}}\)

Thay \(x = 1\) vào đẳng thức trên ta được: \({a_0} + {a_1} + {a_2} + … + {a_{15}} = {(3.1 – 4)^{15}} =  – 1\)

Giải bài 10 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Đề bài

Chứng minh các đẳng thức sau đunggs với mọi \(n \in \mathbb{N}*\):

a) \(1 + 2C_n^1 + 4C_n^2 + … + {2^{n – 1}}C_n^{n – 1} + {2^n}C_n^n = {3^n}\)

b) \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + … + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + … + C_{2n}^{2n – 1}\)

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)

Lời giải chi tiết

a) Áp dụng công thức nhị thức Newton, ta có:

\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + … + C_n^n{x^n}\)

Thay \(x = 2\) ta được:

\({3^n} = C_n^0 + C_n^1.2 + C_n^2{2^2} + … + C_n^n{2^n}\)

Hay \(1 + 2C_n^1 + 4C_n^2 + … + {2^{n – 1}}C_n^{n – 1} + {2^n}C_n^n = {3^n}\)

b) Áp dụng công thức nhị thức Newton, ta có:

\({(1 + x)^{2n}} = C_{2n}^0 + C_{2n}^1x + C_{2n}^2{x^2} + … + C_{2n}^{2n}{x^{2n}}\)

Thay \(x =  – 1\) ta được:

\({(1 + \left( { – 1} \right))^{2n}} = C_{2n}^0 + C_{2n}^1.\left( { – 1} \right) + C_{2n}^2{\left( { – 1} \right)^2} + … + C_{2n}^{2n}{\left( { – 1} \right)^{2n}}\)

Hay \(C_{2n}^0 – C_{2n}^1 + C_{2n}^2 – … – C_{2n}^{2n – 1} + C_{2n}^{2n} = 0\)

Hay \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + … + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + … + C_{2n}^{2n – 1}\)

Bài liên quan:

  1. Giải Bài 2. Nhị thức Newton – Chuyên đề Toán 10 (Chân trời)
  2. Giải Bài 1. Phương pháp quy nạp toán học – Chuyên đề Toán 10 (Chân trời)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Chuyên đề Toán 10 – SÁCH CHÂN TRỜI SÁNG TẠO

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.