• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 7 - Kết nối / Giải Câu hỏi trắc nghiệm trang 16 sách bài tập Toán 7 Kết nối tri thức với cuộc sống>

Giải Câu hỏi trắc nghiệm trang 16 sách bài tập Toán 7 Kết nối tri thức với cuộc sống>

Ngày 21/09/2022 Thuộc chủ đề:Giải sách bài tập toán 7 - Kết nối Tag với:Ôn tập chương VI - SBT Toán 7 - KN

Giải Câu hỏi trắc nghiệm trang 16 sách bài tập Toán 7 Kết nối tri thức với cuộc sống> – SÁCH BÀI TẬP TOÁN 7 – KẾT NỐI TRI THỨC
THUỘC BÀI SỐ: Ôn tập chương VI – SBT Toán 7 – KN

=======

Lựa chọn câu để xem lời giải nhanh hơn

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

1.

Phát biểu nào sau đây là sai?

Nếu ad = bc (với \(a, b, c, d \ne 0\)) thì:

A.\(\dfrac{a}{b} = \dfrac{c}{d}\)

B.\(\dfrac{a}{c} = \dfrac{b}{d}\)

C.\(\dfrac{d}{b} = \dfrac{c}{a}\)

D.\(\dfrac{d}{a} = \dfrac{b}{c}\)

Phương pháp giải:

Tính chất của tỉ lệ thức.

Lời giải chi tiết:

Nếu ad = bc thì \(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a}\); \(\dfrac{d}{c} = \dfrac{b}{a}\)

Chọn D

2.

Cho dãy tỉ số bằng nhau . Phát biểu nào sau đây là đúng?

A.\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c – e}}{{b – d + f}}\)

B. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a – c + e}}{{b + d – f}}\)

C. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a – e}}{{b – f}}\)

D. \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c}}{{b + f}}\)

Phương pháp giải:

Tính chất của dãy tỉ số bằng nhau.

Lời giải chi tiết:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a – e}}{{b – f}}\)

Chọn C

3.

Cho đại lượng y liên hệ với đại lượng x theo công thức \(y = \dfrac{2}{3}x\). Gọi \({x_1};{x_2};{x_3}\) lần lượt là các giá trị khác nhau của x; \({y_1};{y_2};{y_3}\) lần lượt là các giá trị tương ứng của y. Phát biểu nào sau đây sai?

A.y tỉ lệ thuận với x theo hệ số tỉ lệ \(\dfrac{2}{3}\)

B. x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{2}{3}\)

C.\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = \dfrac{2}{3}\)

D. \(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = \dfrac{3}{2}\)

Phương pháp giải:

Định nghĩa 2 đại lượng tỉ lệ thuận

Lời giải chi tiết:

\(y = \dfrac{2}{3}x\) nên x tỉ lệ thuận với y theo hệ số tỉ lệ \(\dfrac{2}{3}\).

Chọn B

4.

Cho đại lượng y liên hệ với đại lượng x theo công thức \(y = \dfrac{{12}}{x}\). Gọi \({x_1};{x_2};{x_3}\) lần lượt là các giá trị khác nhau của x, \({y_1};{y_2};{y_3}\) lần lượt là các giá trị tương ứng của y. Phát biểu nào sau đây đúng?

A. Ta có: \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = 12\).

B. Hai đại lượng x và y tỉ lệ thuận với nhau.

C.\(\dfrac{{{y_1}}}{{{y_2}}} = \dfrac{{{x_1}}}{{{x_2}}};\dfrac{{{y_1}}}{{{y_3}}} = \dfrac{{{x_1}}}{{{x_3}}};\dfrac{{{y_2}}}{{{y_3}}} = \dfrac{{{x_2}}}{{{x_3}}}\)

D.\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}}\)

Phương pháp giải:

Định nghĩa và tính chất 2 đại lượng tỉ lệ nghịch

Lời giải chi tiết:

Vì \(y = \dfrac{{12}}{x}\) nên \(x.y=12\). Do đó, x và y là 2 đại lượng tỉ lệ nghịch.

Do đó, \({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = 12\).

Chọn A

5.

Quan hệ của các đại lượng nào sau đây là quan hệ tỉ lệ thuận?

A. Vận tốc trung bình của ô tô và thời gian chuyển động của ô tô trên một quãng đường cố định.

B. Số người và số ngày khi thực hiện một lượng công việc không đổi và năng suất lao động của mỗi người như nhau.

C. Quãng đường đi được và thời gian chuyển động của vật chuyển động đều.

D. Chiều rộng và chiều dài của hình chữ nhật có diện tích không đổi.

Phương pháp giải:

Nhận biết 2 đại lượng tỉ lệ thuận.

Lời giải chi tiết:

Vì vận tốc của vật chuyển động đều là không đổi nên quãng đường đi được và thời gian chuyển động của vật chuyển động đều.

Chọn C

6.

Cho x tỉ lệ thuận với y theo hệ số tỉ lệ 2 và y tỉ lệ nghịch với z theo hệ số tỉ lệ 8. Phát biểu nào sau đây là đúng?

A. x tỉ lệ nghịch với z theo hệ số tỉ lệ 16

B. x tỉ lệ nghịch với z theo hệ số tỉ lệ 4

C. x tỉ lệ thuận với z theo hệ số tỉ lệ 16

D. x tỉ lệ thuận với z theo hệ số tỉ lệ 4.

Phương pháp giải:

Nếu x tỉ lệ thuận với y theo hệ số tỉ lệ k thì x = k.y

Nếu y tỉ lệ nghịch với z theo hệ số tỉ lệ m thì y . z = m 

Biểu diễn đại lượng x và z rồi kết luận.

Lời giải chi tiết:

Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 2 thì x = 2.y

Vì y tỉ lệ nghịch với z theo hệ số tỉ lệ 4 thì y . z  = 8 hay \(y = \dfrac{8}{z}\)

Do đó, \(x = 2.\dfrac{8}{z}=\dfrac{16}{z}\) nên x tỉ lệ nghịch với z theo hệ số tỉ lệ là 16.

Chọn A

 

============

Thuộc chủ đề: Giải sách bài tập toán 7 – Kết nối

Bài liên quan:

  1. Giải Bài 6.42 trang 18 SBT Toán 7 – KN
  2. Giải Bài 6.41 trang 18 SBT Toán 7 – KN
  3. Giải Bài 6.40 trang 18 SBT Toán 7 – KN
  4. Giải Bài 6.39 trang 18 SBT Toán 7 – KN
  5. Giải Bài 6.38 trang 18 SBT Toán 7 – KN
  6. Giải Bài 6.37 trang 17 SBT Toán 7 – KN
  7. Bài 6.36 trang 17 SBT Toán 7 – KN
  8. Giải Bài 6.35 trang 17 SBT Toán 7 – KN
  9. Giải Bài 6.33 trang 17 SBT Toán 7 – KN

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập SBT Toán 7 – Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.