• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Bất đẳng thức – SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY

Bất đẳng thức – SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY

Ngày 01/01/2020 Thuộc chủ đề:Toán lớp 10 Tag với:Bất đẳng thức đại số 10

DẠNG TOÁN 2: SỬ DỤNG BẤT ĐẲNG THỨC CAUCHY(côsi) ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC VÀ TÌM GIÁ TRI LỚN NHẤT, NHỎ NHẤT

1. Phương pháp giải

Một số chú ý khi sử dụng bất đẳng thức côsi:

* Khi áp dụng bđt côsi thì các số phải là những số không âm

* BĐT côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích

* Điều kiện xảy ra dấu ‘=’ là các số bằng nhau

* Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng

Đối với hai số:\({x^2}\,\, + \,{y^2}\,\, \ge \,\,2xy;\,\,\,\,\,\,\,\,{x^2}\,\, + \,{y^2}\,\, \ge \,\,\frac{{{{(x\, + \,y)}^2}}}{2};\,\,\,\,\,\,\,xy \le \,\,{\left( {\frac{{x + y}}{2}} \right)^2}\).

Đối với ba số: \(abc \le \frac{{{a^3} + {b^3} + {c^3}}}{3},\,\,abc \le {\left( {\frac{{a + b + c}}{3}} \right)^3}\)

2. Các ví dụ minh họa

Loại 1: Vận dụng trực tiếp bất đẳng thức côsi

Ví dụ 1:

Cho \(a,b\) là số dương thỏa mãn \({a^2} + {b^2} = 2\). Chứng minh rằng

a) \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\)

b) \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \)

Hướng dẫn:

a) Áp dụng BĐT côsi ta có

\(\frac{a}{b} + \frac{b}{a} \ge 2\sqrt {\frac{a}{b}.\frac{b}{a}}  = 2,\,\,\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{b}{{{a^2}}}}  = \frac{2}{{\sqrt {ab} }}\)

Suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge \frac{4}{{\sqrt {ab} }}\) (1)

Mặt khác ta có \(2 = {a^2} + {b^2} \ge 2\sqrt {{a^2}{b^2}}  = 2ab \Rightarrow ab \le 1\) (1)

Từ (1) và (2) suy ra \(\left( {\frac{a}{b} + \frac{b}{a}} \right)\left( {\frac{a}{{{b^2}}} + \frac{b}{{{a^2}}}} \right) \ge 4\) ĐPCM.

Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).

b) Ta có \({\left( {a + b} \right)^5} = \left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right)\)

Áp dụng BĐT côsi ta có

\({a^2} + 2ab + {b^2} \ge 2\sqrt {2ab\left( {{a^2} + {b^2}} \right)}  = 4\sqrt {ab} \) và \(\left( {{a^3} + 3a{b^2}} \right) + \left( {3{a^2}b + {b^3}} \right) \ge 2\sqrt {\left( {{a^3} + 3a{b^2}} \right)\left( {3{a^2}b + {b^3}} \right)}  = 4\sqrt {ab\left( {1 + {b^2}} \right)\left( {{a^2} + 1} \right)} \)

Suy ra \(\left( {{a^2} + 2ab + {b^2}} \right)\left( {{a^3} + 3a{b^2} + 3{a^2}b + {b^3}} \right) \ge 16ab\sqrt {\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)} \)

Do đó \({\left( {a + b} \right)^5} \ge 16ab\sqrt {\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)} \) ĐPCM.

Đẳng thức xảy ra khi và chỉ khi \(a = b = 1\).

Ví dụ 2:

Cho \(a,b,c\) là số dương. Chứng minh rằng

a) \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\)

b) \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\)

c) \((1 + a)(1 + b)(1 + c) \ge {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\)

d) \({a^2}\sqrt {bc}  + {b^2}\sqrt {ac}  + {c^2}\sqrt {ab}  \le {a^3} + {b^3} + {c^3}\)

Hướng dẫn:

a) Áp dụng BĐT côsi ta có

\(a + \frac{1}{b} \ge 2\sqrt {\frac{a}{b}} ,\,\,b + \frac{1}{c} \ge 2\sqrt {\frac{b}{c}} ,\,\,c + \frac{1}{a} \ge 2\sqrt {\frac{c}{a}} \)

Suy ra \(\left( {a + \frac{1}{b}} \right)\left( {b + \frac{1}{c}} \right)\left( {c + \frac{1}{a}} \right) \ge 8\sqrt {\frac{a}{b}} .\sqrt {\frac{b}{c}} .\sqrt {\frac{c}{a}}  = 8\) ĐPCM.

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).

b) Áp dụng BĐT côsi cho hai số dương ta có

\(1 + {a^2} \ge 2\sqrt {{a^2}}  = 2a\), tương tự ta có \(1 + {b^2} \ge 2b,\,\,1 + {c^2} \ge 2c\)

Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 2\left( {{a^2}b + {b^2}c + {c^2}a} \right)\)

Mặt khác, áp dụng BĐT côsi cho ba số dương ta có

\({a^2}b + {b^2}c + {c^2}a \ge 3\sqrt {{a^2}b.{b^2}c.{c^2}a}  = 3abc\)

Suy ra \({a^2}(1 + {b^2}) + {b^2}(1 + {c^2}) + {c^2}(1 + {a^2}) \ge 6abc\). ĐPCM.

Đẳng thức xảy ra khi và chỉ khi \(a = b = c = 1\).

c) Ta có \((1 + a)(1 + b)(1 + c) = 1 + \left( {ab + bc + ca} \right) + \left( {a + b + c} \right) + abc\)

Áp dụng BĐT côsi cho ba số dương ta có

\(ab + bc + ca \ge 3\sqrt[3]{{ab.bc.ca}} = 3{\left( {\sqrt[3]{{abc}}} \right)^2}\) và \(a + b + c \ge 3\sqrt[3]{{abc}}\)

Suy ra \((1 + a)(1 + b)(1 + c) \ge 1 + 3{\left( {\sqrt[3]{{abc}}} \right)^2} + 3\sqrt[3]{{abc}} + abc = {\left( {1 + \sqrt[3]{{abc}}} \right)^3}\) ĐPCM

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).

d) Áp dụng BĐT côsi cho hai số dương ta có

\({a^2}\sqrt {bc}  \le {a^2}\left( {\frac{{b + c}}{2}} \right),\,\,\,{b^2}\sqrt {ac}  \le {b^2}\left( {\frac{{a + c}}{2}} \right),\,\,{c^2}\sqrt {ab}  \le {c^2}\left( {\frac{{a + b}}{2}} \right)\)

Suy ra \({a^2}\sqrt {bc}  + {b^2}\sqrt {ac}  + {c^2}\sqrt {ab}  \le \frac{{{a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b}}{2}\) (1)

Mặt khác theo BĐT côsi cho ba số dương ta có

\({a^2}b \le \frac{{{a^3} + {a^3} + {b^3}}}{3},\,\,{b^2}a \le \frac{{{b^3} + {b^3} + {a^3}}}{3},\,\,{a^2}c \le \frac{{{a^3} + {a^3} + {c^3}}}{3},\)

\({c^2}a \le \frac{{{c^3} + {c^3} + {a^3}}}{3},\,\,{b^2}c \le \frac{{{b^3} + {b^3} + {c^3}}}{3},\,\,{c^2}b \le \frac{{{c^3} + {c^3} + {b^3}}}{3}\)

Suy ra \({a^2}b + {b^2}a + {a^2}c + {c^2}a + {b^2}c + {c^2}b \le 2\left( {{a^3} + {b^3} + {c^3}} \right)\) (2)

Từ (1) và (2) suy ra \({a^2}\sqrt {bc}  + {b^2}\sqrt {ac}  + {c^2}\sqrt {ab}  \le {a^3} + {b^3} + {c^3}\)

Đẳng thức xảy ra khi và chỉ khi \(a = b = c\).

 

Loại 2: Kĩ thuật tách, thêm bớt, ghép cặp

  • Để chứng minh BĐT ta thường phải biến đổi (nhân chia, thêm, bớt một biểu thức) để tạo biểu thức có thể giản ước được sau khi áp dụng BĐT côsi.
  • Khi gặp BĐT có dạng \(x + y + z \ge a + b + c\)(hoặc \(xyz \ge abc\)), ta thường đi chứng minh \(x + y \ge 2a\)(hoặc\(ab \le {x^2}\)), xây dựng các BĐT tương tự rồi cộng(hoặc nhân) vế với vế ta suy ra điều phải chứng minh.
  • Khi tách và áp dụng BĐT côsi ta dựa vào việc đảm bảo dấu bằng xảy ra(thường dấu bằng xảy ra khi các biến bằng nhau hoặc tại biên).

Ví dụ:

Cho \(a,b,c\) là số dương. Chứng minh rằng:

a) \(\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\)

b)  \(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)

Hướng dẫn:

a) Áp dụng BĐT côsi ta có \(\frac{{ab}}{c} + \frac{{bc}}{a} \ge 2\sqrt {\frac{{ab}}{c}.\frac{{bc}}{a}}  = 2b\)

Tương tự ta có \(\frac{{bc}}{a} + \frac{{ac}}{b} \ge 2c,\,\,\frac{{ac}}{b} + \frac{{ba}}{c} \ge 2a\).

Cộng vế với vế các BĐT trên ta được

\(2\left( {\frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b}} \right) \ge 2\left( {a + b + c} \right) \Leftrightarrow \frac{{ab}}{c} + \frac{{bc}}{a} + \frac{{ac}}{b} \ge a + b + c\) ĐPCM

Đẳng thức xảy ra khi \(a = b = c\) .

b) Áp dụng BĐT côsi ta có \(\frac{a}{{{b^2}}} + \frac{1}{a} \ge 2\sqrt {\frac{a}{{{b^2}}}.\frac{1}{a}}  = \frac{2}{b}\)

Tương tự ta có \(\frac{b}{{{c^2}}} + \frac{1}{b} \ge \frac{2}{c},\,\,\frac{c}{{{a^2}}} + \frac{1}{c} \ge \frac{2}{a}\)

Cộng vế với vế các BĐT trên ta được

\(\frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{2}{a} + \frac{2}{b} + \frac{2}{c} \Leftrightarrow \frac{a}{{{b^2}}} + \frac{b}{{{c^2}}} + \frac{c}{{{a^2}}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) ĐPCM.

Đẳng thức xảy ra khi \(a = b = c\) .

Bài liên quan:

  1. Trắc nghiệm về bất đẳng thức đại số 10
  2. Bất đẳng thức – SỬ DỤNG ĐỊNH NGHĨA VÀ TÍCH CHẤT CƠ BẢN
  3. Lý thuyết Bất đẳng thức – Chương 4 – Đại số 10

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.