• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Ngày 06/01/2020 Thuộc chủ đề:Toán lớp 10 Tag với:Học bài 3 chương 4 đại số 10

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán


Ví dụ 1 . Giải các bất phương trình sau:
a) $\left( x-1 \right)\left( 2-3x \right)\ge 0.$
b) $\left( x-2 \right)\left( {{x}^{2}}-5x+4 \right)<0.$
c) $\left( 2x-1 \right)\left( {{x}^{3}}-1 \right)\le 0.$
d) $x\left( \sqrt{3}x-3 \right)\left( 3-{{x}^{2}} \right)\le 0.$

a) Ta có $\left( x-1 \right)\left( 2-3x \right)=0$ $\Leftrightarrow \left[ \begin{matrix}
x=1 \\
x=\frac{2}{3} \\
\end{matrix} \right.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Suy ra bất phương trình có tập nghiệm là $S=\left[ \frac{2}{3};1 \right].$
b) Ta có $\left( x-2 \right)\left( {{x}^{2}}-5x+4 \right)$ $=\left( x-2 \right)\left( x-1 \right)\left( x-4 \right).$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Suy ra bất phương trình có tập nghiệm là $S=\left( -\infty ;1 \right)\cup \left( 2;4 \right).$
c) Ta có $\left( 2x-1 \right)\left( {{x}^{3}}-1 \right)\le 0$ $\Leftrightarrow \left( 2x-1 \right)\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)\le 0$ $\Leftrightarrow \left( 2x-1 \right)\left( x-1 \right)\le 0$ (vì ${{x}^{2}}+x+1={{\left( x+\frac{1}{2} \right)}^{2}}+\frac{3}{4}>0$).
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Suy ra bất phương trình có tập nghiệm là $S=\left[ \frac{1}{2};1 \right].$
d) Ta có $x\left( \sqrt{3}x-3 \right)\left( 3-{{x}^{2}} \right)\le 0$ $\Leftrightarrow x\sqrt{3}\left( x-\sqrt{3} \right)\left( \sqrt{3}-x \right)\left( \sqrt{3}+x \right)\le 0$ $\Leftrightarrow -\sqrt{3}x{{\left( x-\sqrt{3} \right)}^{2}}\left( x+\sqrt{3} \right)\le 0$ $\Leftrightarrow \left[ \begin{matrix}
x=\sqrt{3} \\
x\left( x+\sqrt{3} \right)\ge 0 \\
\end{matrix} \right.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Suy ra $x\left( x+\sqrt{3} \right)\ge 0$ $\Leftrightarrow x\in (-\infty ;-\sqrt{3}]\cup [0;+\infty ).$
Vậy tập nghiệm của bất phương trình là: $S=(-\infty ;-\sqrt{3}]\cup [0;+\infty ).$

Ví dụ 2 . Giải các bất phương trình sau:
a) $\frac{-2x+4}{\left( 2x-1 \right)\left( 3x+1 \right)}\le 0.$
b) $\frac{\left( x-3 \right)\left( x+2 \right)}{{{x}^{2}}-1}<1.$
c) $\frac{1}{{{\left( x-2 \right)}^{2}}}\le \frac{1}{x+4}.$

a) Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Vậy tập nghiệm của bất phương trình là $S=(-\frac{1}{3};\frac{1}{2})\cup [\text{ 2};+\infty ).$
b) Ta có $\frac{\left( x-3 \right)\left( x+2 \right)}{{{x}^{2}}-1}<1$ $\Leftrightarrow 1-\frac{\left( x-3 \right)\left( x+2 \right)}{{{x}^{2}}-1}>0$ $\Leftrightarrow \frac{x+5}{\left( x-1 \right)\left( x+1 \right)}>0.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Vậy tập nghiệm của bất phương trình là $S=(-5;-1)\cup (1;+\infty ).$
c) Điều kiện xác định: $\left\{ \begin{matrix}
x\ne 2 \\
x\ne -4 \\
\end{matrix} \right.$
Ta có $\frac{1}{{{\left( x-2 \right)}^{2}}}\le \frac{1}{x+4}$ $\Leftrightarrow \frac{1}{x+4}-\frac{1}{{{\left( x-2 \right)}^{2}}}\ge 0$ $\Leftrightarrow \frac{{{x}^{2}}-4x}{\left( x+4 \right){{\left( x-2 \right)}^{2}}}\ge 0$ $\Leftrightarrow \frac{x\left( x-4 \right)}{\left( x+4 \right){{\left( x-2 \right)}^{2}}}\ge 0$ $\Leftrightarrow \frac{x\left( x-4 \right)}{\left( x+4 \right)}\ge 0.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Kết hợp với điều kiện xác định suy ra tập nghiệm của bất phương trình là $S=(-4;0]\cup [4;+\infty ).$

Ví dụ 3 . Giải các bất phương trình sau:
a) $\left| 2x+1 \right|<3x.$
b) $\left| \left| 2x-1 \right|-4 \right|>3.$
c) $\left| x+1 \right|-\left| x-2 \right|\ge 3.$

a)
+ Với $x\ge -\frac{1}{2}$ ta có bất phương trình tương đương với $2x+1<3x$ $\Leftrightarrow x>1.$ Kết hợp với điều kiện $x\ge -\frac{1}{2}$ suy ra bất phương trình có tập nghiệm là $\left( 1;+\infty \right).$
+ Với $x<-\frac{1}{2}$ ta có bất phương trình tương đương với $-2x-1<3x$ $\Leftrightarrow x>-\frac{1}{5}.$ Kết hợp với điều kiện $x<-\frac{1}{2}$ suy ra bất phương trình vô nghiệm.
Vậy tập nghiệm của bất phương trình là $S=\left( 1;+\infty \right).$
b) Ta có $\left| \left| 2x-1 \right|-4 \right|>3$ $\Leftrightarrow \left[ \begin{matrix}
\left| 2x-1 \right|-4>3 \\
\left| 2x-1 \right|-4<-3 \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
\left| 2x-1 \right|>7 \\
\left| 2x-1 \right|<1 \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
\begin{align}
& 2x-1>7 \\
& 2x-1<-7 \\
\end{align} \\
-1<2x-1<1 \\
\end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix}
\begin{align}
& x>4 \\
& x<-3 \\
\end{align} \\
0<x<1 \\
\end{matrix} \right.$
Vậy tập nghiệm của bất phương trình là $S=\left( -\infty ;-3 \right)\cup \left( 0;1 \right)\cup \left( 4;+\infty \right).$
c) Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Từ bảng xét dấu đó ta chia ra các trường hợp sau:
+ Với $x<-1$ ta có bất phương trình tương đương với $-\left( x+1 \right)+\left( x-2 \right)\ge 3$ $\Leftrightarrow -3\ge 3$ (vô nghiệm).
+ Với $-1\le x<2$ ta có bất phương trình tương đương với $\left( x+1 \right)+\left( x-2 \right)\ge 3$ $\Leftrightarrow x\ge 2.$ Kết hợp với điều kiện $-1\le x<2$ suy ra bất phương trình vô nghiệm.
+ Với $x\ge 2$ ta có bất phương trình tương đương với $\left( x+1 \right)-\left( x-2 \right)\ge 3$ $\Leftrightarrow 3\ge 3.$ Kết hợp với điều kiện $x\ge 2$ suy ra bất phương trình có nghiệm là $x\ge 2.$
Vậy tập nghiệm của bất phương trình là $S=[2;+\infty ).$

Ví dụ 4 . Giải các bất phương trình sau:
a) $\frac{\left| x-2 \right|-x}{x}<1.$
b) $\frac{\left| x-1 \right|-1}{{{x}^{4}}-{{x}^{2}}}\ge 0.$

a)
+ Với $x\ge 2$ ta có bất phương trình tương đương với $\frac{x-2-x}{x}<1$ $\Leftrightarrow \frac{-2}{x}<1$ $\Leftrightarrow x>-2.$ Kết hợp điều kiện $x\ge 2$ suy ra tập nghiệm bất phương trình là ${{S}_{1}}=[2;+\infty ).$
+ Với $x<2$ ta có bất phương trình tương đương với $\frac{2-x-x}{x}<1$ $\Leftrightarrow \frac{2-2x}{x}<1$ $\Leftrightarrow 1-\frac{2-2x}{x}>0$ $\Leftrightarrow \frac{3x-2}{x}>0.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Kết hợp điều kiện $x<2$ suy ra tập nghiệm bất phương trình là ${{S}_{2}}=(-\infty ;0)\cup (\frac{2}{3};2).$
Vậy tập nghiệm bất phương trình là $\text{S}={{S}_{1}}\cup {{S}_{2}}=(-\infty ;0)\cup (\frac{2}{3};+\infty ).$
b) Điều kiện xác định: ${{x}^{4}}-{{x}^{2}}\ne 0$ $\Leftrightarrow \left\{ \begin{matrix}
x\ne 0 \\
x\ne \pm 1 \\
\end{matrix} \right.$
Ta có $\frac{\left| x-1 \right|-1}{{{x}^{4}}-{{x}^{2}}}\ge 0$ $\Leftrightarrow \frac{\left( \left| x-1 \right|+1 \right)\left( \left| x-1 \right|-1 \right)}{{{x}^{4}}-{{x}^{2}}}\ge 0$ $\Leftrightarrow \frac{{{\left| x-1 \right|}^{2}}-1}{{{x}^{4}}-{{x}^{2}}}\ge 0$ $ \Leftrightarrow \frac{{{x^2} – 2x}}{{{x^4} – {x^2}}} \ge 0$ $ \Leftrightarrow \frac{{x\left( {x – 2} \right)}}{{{x^2}\left( {x – 1} \right)\left( {x + 1} \right)}} \ge 0$ $ \Leftrightarrow \frac{{x – 2}}{{x\left( {x – 1} \right)\left( {x + 1} \right)}} \ge 0.$
Bảng xét dấu:

Bài tập minh họa Ứng dụng xét dấu của nhị thức bậc nhất vào giải toán

Vậy tập nghiệm bất phương trình là: $S = \left( { – \infty ; – 1} \right) \cup \left( {0;1} \right) \cup \left[ {2; + \infty } \right).$

Bài liên quan:

  1. Bài tập minh họa Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất
  2. Lý thuyết bài Dấu của nhị thức bậc nhất

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.