• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 12 / Bài 4: Phương trình bậc hai với hệ số thực – Chương 4 – Giải tích 12

Bài 4: Phương trình bậc hai với hệ số thực – Chương 4 – Giải tích 12

Đăng ngày: 26/11/2019 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Toán lớp 12

Mục lục:

  1. 1. Phương trình bậc hai với hệ số thực
  2. 2. Nhận xét về nghiệm phương trình bậc hai trên tập số phức
  3. Bài tập minh họa

1. Phương trình bậc hai với hệ số thực

  • Các căn bậc hai của số thực \(a<0\) là \(\pm i\sqrt a.\)
  • Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(a,b,c\in \mathbb{R},a\ne0.\)

Đặt \(\Delta=b^2-4ac\):

  • Nếu \(\Delta=0\) thì phương trình có một nghiệm kép (thực) \(x=-\frac{b}{2a}.\)
  • Nếu \(\Delta>0\) thì phương trình có hai nghiệm thực \(x_{1,2}=\frac{-b\pm \sqrt \Delta}{2a}.\)
  • Nếu \(\Delta<0\) thì phương trình có hai nghiệm phức \({x_{1,2}} = \frac{{ – b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}.\)

2. Nhận xét về nghiệm phương trình bậc hai trên tập số phức

Trên \(\mathbb{C}\), mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt).

Tổng quát, mọi phương trình bậc \(n\) \((n\in\mathbb{N}^*)\)đều có \(n\) nghiệm phức (các nghiệm không nhất thiết phải phân biệt).

Bài tập minh họa

Ví dụ 1:

Giải các phương trình sau trên tập số phức:

a) \(\,\,{z^2} + 2z + 5 = 0\)

b) \({z^3} + 8 = 0\)

c) \(z^3-27=0\)

d) \(\,\,{z^4} – {z^3} + 6{z^2} – 8z – 16 = 0\)

Lời giải:

a) \(\,\,{z^2} + 2z + 5 = 0\)

Ta có: \({\Delta ‘} = – \,4 = 4{i^2} \Rightarrow z = – 1 \pm 2i\)

Vậy phương trình có 2 nghiệm: \(z=-1+2i;z=-1-2i.\)

b) \({\mkern 1mu} {\mkern 1mu} {z^3} + 8 = 0 \Leftrightarrow (z + 2)({z^2} – 2z + 4) = 0 \Leftrightarrow \left[ \begin{array}{l} z = – 2\\ {z^2} – 2z + 4 = 0\,(*) \end{array} \right.\)

Giải (*):

Ta có: \(\Delta ‘ = – 3 = 3{i^2}\). Vậy (*) có hai nghiệm phức: \(z = 1 \pm \sqrt 3 i.\)

Vậy phương trình có 3 nghiệm phức: \(z=-2;z=1+\sqrt 3i;z=1-\sqrt3i.\)

c) \({z^3} – 27 = 0 \Leftrightarrow \left( {z – 3} \right)\left( {{z^2} + 3z + 9} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} z = 3\\ {z^2} + 3z + 9 = 0\,(*) \end{array} \right.\)

Giải (*):

Ta có: \(\Delta = – 27 = 27i^2\). Vậy (*) có hai nghiệm phức: \(z =\frac{-3\pm 3\sqrt3i}{2}.\)

Vậy phương trình có 3 nghiệm phức: \(z=3;z=\frac{-3+3\sqrt3i}{2};z=\frac{-3-3\sqrt3i}{2}.\)

d) \(\,\,{z^4} – {z^3} + 6{z^2} – 8z – 16 = 0 \Leftrightarrow (z + 1)(z – 2)({z^2} + 8) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l} z = – 1\\ z = 2\\ z = \pm 2\sqrt 2 i \end{array} \right.\)

Ví dụ 2:

Giải các phương trình sau trên tập số phức:

a) \(\,\,({z^2} – z)(z + 3)(z + 2) = 10\)

b) \(\,\,{(z + 3)^4} + {(z + 5)^4} = 2\)

c) \(\,\,{({z^2} + 3z + 6)^2} + 2z({z^2} + 3z + 6) – 3{z^2} = 0\)

Lời giải:

a) \(\,\,({z^2} – z)(z + 3)(z + 2) = 10\)

\(\Leftrightarrow {\left( {{z^2} – 2z} \right)^2} + 7\left( {{z^2} – 2z} \right) + 10 = 0\)

\(\Leftrightarrow \left[ \begin{array}{l} {z^2} – 2z = – 2\\ {z^2} – 2z = – 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} z = 1 \pm i\\ z = 1 \pm 2i \end{array} \right..\)

b) \(\,\,{(z + 3)^4} + {(z + 5)^4} = 2\)

Đặt \({\rm{t}} = z + {\rm{4}}\), khi đó phương trình trở thành:

\({(t – 1)^4} + {(t + 1)^4} = 2 \Leftrightarrow {t^4} + 6{t^2} = 0\)

\(\Leftrightarrow \left[ \begin{array}{l} {t^2} = 0\\ {t^2} + 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} t = 0\\ t = \pm \sqrt 6 i \end{array} \right.\)

Với \({\rm{t }} = {\rm{ }}0 \Rightarrow z = – 4.\)

Với \({\rm{t }} = {\rm{ }}\sqrt[{}]{6}i \Rightarrow z = – 4 + \sqrt[{}]{6}i.\)

Với \({\rm{t }} = {\rm{ – }}\sqrt[{}]{6}i \Rightarrow z = – 4 – \sqrt[{}]{6}i.\)

c) \(\,\,{({z^2} + 3z + 6)^2} + 2z({z^2} + 3z + 6) – 3{z^2} = 0\)

Đặt \(t = {z^2} + 3z + 6\), khi đó phương trình trở thành:

\({t^2} + 2zt – 3{z^2} = 0 \Leftrightarrow \left[ \begin{array}{l} t = z\\ t = – 3z \end{array} \right.\)

Với  \(t = z \Rightarrow {z^2} + 3z + 6 = z \Leftrightarrow z = – 1 \pm \sqrt 5 i.\)
Với  \(t = – 3z \Rightarrow {z^2} + 3z + 6 = – 3z \Leftrightarrow z = – 3 \pm \sqrt 3.\)

Tag với:Học toán giải tích 12 chương 4

Bài liên quan:

  • Ôn Chương 4 Số phức – Giải tích 12
  • Bài 3: Phép chia số phức – Chương 4 – Giải tích 12
  • Bài 2: Cộng, trừ và nhân số phức – Chương 4 – Giải tích 12
  • Bài 1: Số phức – Chương 4 – Giải tích 12

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 4: Số Phức
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.