• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài 1. Đại cương về phương trình – – Chương 3 – Đại số 10

Bài 1. Đại cương về phương trình – – Chương 3 – Đại số 10

Ngày 30/10/2019 Thuộc chủ đề:Toán lớp 10 Tag với:Học chương 3 đại số 10

1. Khái niệm phương trình

a) Phương trình một ẩn

Phương trình ẩn  \(x\) là mệnh đề chứa biến có dạng $f\left( x \right) = g\left( x \right)\,\,\left( 1 \right)$

trong đó $f\left( x \right)$ và $g\left( x \right)$ là những biểu thức của $x.$

Ta gọi $f\left( x \right)$ là vế trái, $g\left( x \right)$ là vế phải của phương trình $\left( 1 \right).$

Nếu có số thực ${x_0}$ sao cho $f\left( {{x_0}} \right) = g\left( {{x_0}} \right)$ là mệnh đề đúng thì ${x_0}$ được gọi là một  nghiệm của phương trình  $\left( 1 \right).$

Giải phương trình $\left( 1 \right)$ là tìm tất cả các nghiệm của nó (nghĩa là tìm tập nghiệm).

Nếu phương trình không có nghiệm nào cả thì ta nói phương trình  vô nghiệm  (hoặc nói tập nghiệm của nó là rỗng).

b) Điều kiện xác định của một phương trình

Khi giải phương trình $\left( 1 \right)$, ta cần lưu ý với điều kiện đối với ẩn số $x$ để $f\left( x \right)$ và $g\left( x \right)$ có nghĩa (tức là mọi phép toán đều thực hiện được). Ta cũng nói đó là điều kiện xác định của phương trình (hay gọi tắt là điều kiện của phương trình).

c) Phương trình nhiều ẩn

Ngoài các phương trình một ẩn, ta còn gặp những phương trình có nhiều ẩn số, chẳng hạn

$\begin{array}{l}3x + 2y = {x^2} – 2xy + 8,\,\,\,\,\,\,\left( 2 \right)\\4{x^2} – xy + 2z = 3{z^2} + 2xz + {y^2}.\,\,\,\,\,\,\,\left( 3 \right)\end{array}$

Phương trình $\left( 2 \right)$ là phương trình hai ẩn ($x$ và $y$), còn $\left( 3 \right)$ là phương trình ba ẩn ($x,\,y$ và $z$).

Khi $x = 2,\,\,y = 1$ thì hai vế của phương trình $\left( 2 \right)$ có giá trị bằng nhau, ta nói cặp $\left( {x;y} \right) = \left( {2;1} \right)$ là một nghiệm của phương trình $\left( 2 \right).$

Tương tự, bộ ba số $\left( {x;y;z} \right) = \left( { – \,1;1;2} \right)$ là một nghiệm của phương trình $\left( 3 \right).$

d) Phương trình chứa tham số

Trong một phương trình (một hoặc nhiều ẩn), ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là  tham số.

2. Phương trình tương đương và phương trình hệ quả

a) Phương trình tương đương

Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

b) Phép biến đổi tương đương

Định lí:

Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương

a) Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức;

b) Nhân hoặc chia hai vế với cùng một số khác $0$ hoặc với cùng một biểu thức luôn có giá trị khác $0.$

Chú ý:  Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.

c) Phương trình hệ quả

Nếu mọi nghiệm của phương trình $f\left( x \right) = g\left( x \right)$ đều là nghiệm của phương trình ${f_1}\left( x \right) = {g_1}\left( x \right)$ thì phương trình ${f_1}\left( x \right) = {g_1}\left( x \right)$ được gọi là phương trình hệ quả của phương trình $f\left( x \right) = g\left( x \right).$

Ta viết:

$f\left( x \right) = g\left( x \right) \Rightarrow {f_1}\left( x \right) = {g_1}\left( x \right).$

Phương trình hệ quả có thể có thêm nghiệm không phải là nghiệm của phương trình ban đầu.

Ta gọi đó là  nghiệm ngoại lai .

 

DẠNG TOÁN 1: TÌM ĐIỀU KIỆN XÁC ĐỊNH  CỦA PHƯƠNG TRÌNH

Phương pháp giải

– Điều kiện xác định của phương trình bao gồm các điều kiện để giá trị của \(f\left( x \right),\,\,g\left( x \right)\) cùng được xác định và các điều kiện khác (nếu có yêu cầu trong đề bài)

– Điều kiện để biểu thức

  • \(\sqrt {f\left( x \right)} \) xác định là \(f\left( x \right) \ge 0\)
  • \(\frac{1}{{f\left( x \right)}}\) xác định là \(f\left( x \right) \ne 0\)
  • \(\frac{1}{{\sqrt {f\left( x \right)} }}\) xác định là \(f\left( x \right) > 0\)

 

Ví dụ 1:

Tìm điều kiện xác định của phương trình sau:

a) \(x + \frac{5}{{{x^2} – 4}} = 1\)

b) \(1 + \sqrt {3 – x}  = \sqrt {x – 2} \)

Hướng dẫn:

a) Điều kiện xác định của phương trình là \({x^2} – 4 \ne 0 \Leftrightarrow {x^2} \ne 4 \Leftrightarrow x \ne  \pm 2.\)

b) Điều kiện xác định của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{3 – x \ge 0}\\{x – 2 \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 3}\\{x \ge 2}\end{array}} \right. \Leftrightarrow 2 \le x \le 3.\)

 

Ví dụ 2:

Tìm điều kiện xác định của phương trình sau rồi suy ra tập nghiệm của nó:

a) \(4x + \sqrt {4x – 3}  = 2\sqrt {3 – 4x}  + 3\)

b) \(\sqrt { – {x^2} + 6x – 9}  + {x^3} = 27\)

Hướng dẫn:

a) Điều kiện xác định của phương trình là\(\left\{ {\begin{array}{*{20}{c}}{4{\rm{x}} – 3 \ge 0}\\{3 – 4{\rm{x}} \ge 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge \frac{3}{4}}\\{x \le \frac{3}{4}}\end{array} \Leftrightarrow x = \frac{3}{4}} \right.\)

Thử vào phương trình thấy \(x = \frac{3}{4}\) thỏa mãn

Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ {\frac{3}{4}} \right\}.\)

b) Điều kiện xác định của phương trình là \( – {x^2} + 6x – 9 \ge 0 \Leftrightarrow  – {\left( {x – 3} \right)^2} \ge 0 \Leftrightarrow x = 3\)

Thay \({\rm{x}} = 3\) vào thấy thỏa mãn phương trình

Vậy tập nghiệp của phương trình là \({\rm{S}} = \left\{ 3 \right\}.\)

 

DẠNG TOÁN 2: GIẢI PHƯƠNG TRÌNH BẰNG PHÉP BIẾN ĐỔI TƯƠNG ĐƯƠNG VÀ HỆ QUẢ

 

Phương pháp giải:

Để giải phương trình ta thực hiện các phép biến đổi để đưa về phương trình tương đương với phương trình đã cho đơn giản hơn trong việc giải nó. Một số phép biến đổi thường sử dụng

  • Cộng (trừ) cả hai vế của phương trình mà không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương phương trình đã cho.
  • Nhân (chia) vào hai vế với một biểu thức khác không và không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương với phương trình đã cho.
  • Bình phương hai vế của phương trình ta thu được phương trình hệ quả của phương trình đã cho.
  • Bình phương hai vế của phương trình(hai vế luôn cùng dấu) ta thu được phương trình tương đương với phương trình đã cho.

 

Ví dụ 3:

Tìm số nghiệm của các phương trình sau:

a) \(1 + \frac{1}{{x – 3}} = \frac{5}{{{x^2} – x – 6}}\)

b) \(\frac{{{x^2}}}{{\sqrt {x – 2} }} = \frac{1}{{\sqrt {x – 2} }} – \sqrt {x – 2} \)

Hướng dẫn:

a) ĐKXĐ : \(\left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{{x^2} – x – 6 \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 3}\\{x \ne  – 2}\end{array}} \right.\)

Với điều kiện đó phương trình tương đương với

\(1 + \frac{1}{{x – 3}} = \frac{5}{{\left( {x – 3} \right)\left( {x + 2} \right)}} \Leftrightarrow \left( {x – 3} \right)\left( {x + 2} \right) + x + 2 = 5\)

\( \Leftrightarrow {x^2} = 9 \Leftrightarrow x =  \pm 3\)

Đối chiếu với điều kiện ta có nghiệm của phương trình là \({\rm{x}} =  – 3\).

b) ĐKXĐ: \({\rm{x}} > 2\)

Với điều kiện đó phương trình tương đương với

\({x^2} = 1 – \left( {x – 2} \right) \Leftrightarrow {x^2} + x – 3 = 0 \Leftrightarrow x = \frac{{ – 1 \pm \sqrt {13} }}{2}\)

Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm.

 

Ví dụ 2:

Tìm \(m\) để cặp phương trình sau tương đương

\(m{x^2} – 2\left( {m – 1} \right)x + m – 2 = 0\) (1) và \(\left( {m – 2} \right){x^2} – 3x + {m^2} – 15 = 0\) (2)

Hướng dẫn:

Giả sử hai phương trình (1) và (2) tương đương

Ta có \(\left( 1 \right) \Leftrightarrow \left( {x – 1} \right)\left( {mx – m + 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{mx – m + 2 = 0}\end{array}} \right.\)

Do hai phương trình tương đương nên \(x = 1\) là nghiệm của phương trình (2)

Thay \(x = 1\) vào phương trình (2) ta được

\(\left( {m – 2} \right) – 3 + {m^2} – 15 = 0 \Leftrightarrow {m^2} + m – 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 4}\\{m =  – 5}\end{array}} \right.\)

  • Với \(m =  – 5\) : Phương trình (1) trở thành \( – 5{x^2} + 12x – 7 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{7}{5}}\end{array}} \right.\)

Phương trình (2) trở thành \( – 7{x^2} – 3x + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  – \frac{{10}}{7}}\end{array}} \right.\)

Suy ra hai phương trình không tương đương

  • Với \(m = 4\) : Phương trình (1) trở thành \(4{x^2} – 6x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{x = 1}\end{array}} \right.\)

Phương trình (2) trở thành \(2{x^2} – 3x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)

Suy ra hai phương trình tương đương

Vậy \(m = 4\)thì hai phương trình tương đương.

Bài liên quan:

  1. Ôn tập Chương 3 – Đại số 10
  2. Bài 3. Phương trình và hệ phương trình bậc nhất nhiều ẩn – Chương 3 – Đại số 10
  3. Bài 2. Phương trình quy về phương trình bậc nhất, bậc hai – Chương 3 – Đại số 10

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.