• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 9 - Kết nối / Giải SGK (KNTT) Toán 9: Luyện tập chung trang 108

Giải SGK (KNTT) Toán 9: Luyện tập chung trang 108

Ngày 25/07/2024 Thuộc chủ đề:Giải bài tập Toán 9 - Kết nối Tag với:Giải toán 9 tập 1 kết nối

Giải chi tiết Giải SGK (KNTT) Toán 9: Luyện tập chung trang 108 – SÁCH GIÁO KHOA TOÁN 9 KẾT NỐI TRI THỨC – 2024

================

Giải bài tập Toán 9 Luyện tập chung trang 108

Bài tập

Bài 5.28 trang 109 Toán 9 Tập 1: Cho hai đường thẳng a và b song song với nhau, điểm O nằm trong phần mặt phẳng ở giữa hai đường thẳng đó. Biết rằng khoảng cách từ O đến a và b lần lượt bằng 2 cm và 3 cm.

a) Hỏi bán kính của đường tròn (O; R) phải thỏa mãn điều kiện gì để (O; R) cắt cả hai đường thẳng a và b?

b) Biết rằng đường tròn (O; R) tiếp xúc với đường thẳng a. Hãy xác định vị trí tương đối của đường tròn (O; R) và đường thẳng b.

Lời giải:

a) Đường tròn (O; R) cắt cả hai đường thẳng a và b khi và chỉ khi R > 3 cm.

b) Đường tròn (O; R) tiếp xúc với đường thẳng a nên R = 2 cm < 3 cm.

Do đó (O; R) cắt đường thẳng b.

Bài 5.29 trang 110 Toán 9 Tập 1: Khi chuyển động, giả sử đầu mũi kim dài của một chiếc đồng hồ vạch nên một đường tròn, kí hiệu là (T1), trong khi đầu mũi kim ngắn vạch nên một đường tròn khác, kí hiệu là (T2).

Bài 5.29 trang 110 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Hai đường tròn (T1) và (T2) có vị trí tương đối như thế nào?

b) Giả sử bán kính của (T1) và (T2) lần lượt là R1 và R2. Người ta vẽ trên mặt đồng hồ một họa tiết hình tròn có tâm nằm cách điểm trục kim đồng hồ một khoảng bằng 12R1 và có bán kính bằng 12R2.  Hãy cho biết vị trí tương đối của đường tròn (T3) đối với mỗi đường tròn (T1) và (T2). Vẽ ba đường tròn đó nếu R1 = 3 cm, R2 = 2 cm.

Lời giải:

a) Hai đường tròn (T1) và (T2) là hai đường tròn đồng tâm, (T1) chứa (T2).

b) Gọi tâm của (T1) là O, tâm của (T3) là O’.

Ta có: R3=12R1 ; =12R1<R1<R1+R3.

Suy ra: R1=12R1+12R1>12R1+12R2  nên R1 > OO′ + R3 hay OO′ < R1 − R3.

Do đó (T1) đựng (T3).

Ta có: R3=12R2 ; =12R1<R1<R1+R3 .

Suy ra: R2=12R2+12R2<12R1+12R2  nên R2 < OO′ + R3 hay OO′ > R2 − R3

Khi đó R2 − R3 < OO′ < R2 + R3.

Do đó (T2) và (T3) cắt nhau.

Vậy (T1) đựng (T3); (T2) và (T3) cắt nhau.

• Với R1 = 3 cm, R2 = 2 cm, ta có hình vẽ sau:

Bài 5.29 trang 110 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bài 5.30 trang 110 Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, tiếp tuyến xx’ tại A và tiếp tuyến yy’ tại B của (O). Một tiếp tuyến thứ ba của (O) tại điểm P (P khác A và B) cắt xx’ tại M và cắt yy’ tại N.

a) Chứng minh rằng MN = MA + NB.

b) Đường thẳng đi qua O và vuông góc với AB cắt NM tại Q. Chứng minh rằng Q là trung điểm của đoạn MN.

c) Chứng minh rằng AB tiếp xúc với đường tròn đường kính MN.

Lời giải:

Bài 5.30 trang 110 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.

NB và NC là hai tiếp tuyến cắt nhau của (O) nên NA = NC.

Ta có: MN = MC + NC = MA + NB

b) Gọi K là giao điểm của AN và OQ.

Ta có: BN // OK (vì cùng vuông góc với AB) và O là trung điểm của AB.

Suy ra OK là đường trung bình của tam giác ABN.

Do đó K là trung điểm của AN.

Lại có: AM // QK (vì cùng vuông góc với AB) và K là trung điểm của AN.

Suy ra QK là đường trung bình của tam giác AMN.

Do đó Q là trung điểm của MN.

c) OK là đường trung bình của tam giác ABN nên OK=12NB.

QK là đường trung bình của tam giác AMN nên QK=12MA.

Suy ra: OQ=OK+QK=12NB+12MA=12MN /span> hay OQ = AQ = BQ.

Do đó O thuộc đường tròn đường kính MN.

Mà OQ vuông góc với AB tại O nên AB là tiếp của đường tròn đường kính MN.

Bài 5.31 trang 110 Toán 9 Tập 1: Cho đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A và cùng tiếp xúc với đường thẳng d tại B và C (khác A), trong đó B ∈ (O) và C ∈ (O′). Tiếp tuyến của (O) tại A cắt BC tại M. Chứng minh rằng:

a) Đường thẳng MA tiếp xúc với (O’);

b) Điểm M là trung điểm của đoạn thẳng BC, từ đó suy ra ABC là tam giác vuông.

Lời giải:

Bài 5.31 trang 110 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) A thuộc (O’) và O’A vuông góc với MA nên MA là tiếp tuyến tại A của (O).

b) MA và MB là hai tiếp tuyến cắt nhau của (O) nên MA = MB.

MA và MC là hai tiếp tuyến cắt nhau của (O) nên MA = MC.

Suy ra MB = MC = MA hay M là trung điểm của BC.

Do đó tam giác ABC vuông tại A.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 17. Vị trí tương đối của hai đường tròn

Luyện tập chung trang 108

Bài tập cuối chương 5

Pha chế dung dịch theo nồng độ yêu cầu

Tính chiều cao và xác định khoảng cách

Bài 18. Hàm số y = ax2 (a ≠ 0)

=============
THUỘC: Giải bài tập Toán 9 – SGK KẾT NỐI TRI THỨC

Bài liên quan:

  1. Giải SGK (KNTT) Toán 9: Tính chiều cao và xác định khoảng cách
  2. Giải SGK (KNTT) Toán 9: Pha chế dung dịch theo nồng độ yêu cầu
  3. Giải SGK (KNTT) Toán 9: Bài tập cuối chương 5
  4. Giải SGK (KNTT) Toán 9 Bài 17: Vị trí tương đối của hai đường tròn
  5. Giải SGK (KNTT) Toán 9 Bài 16: Vị trí tương đối của đường thẳng và đường tròn
  6. Giải SGK (KNTT) Toán 9: Luyện tập chung trang 96
  7. Giải SGK (KNTT) Toán 9 Bài 15: Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
  8. Giải SGK (KNTT) Toán 9 Bài 14: Cung và dây của một đường tròn
  9. Giải SGK (KNTT) Toán 9 Bài 13: Mở đầu về đường tròn
  10. Giải SGK (KNTT) Toán 9: Bài tập cuối chương 4 trang 81
  11. Giải SGK (KNTT) Toán 9: Luyện tập chung trang 80
  12. Giải SGK (KNTT) Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng
  13. Giải SGK (KNTT) Toán 9 Bài 11: Tỉ số lượng giác của góc nhọn
  14. Giải SGK (KNTT) Toán 9: Bài tập cuối chương 3 trang 65
  15. Giải SGK (KNTT) Toán 9: Luyện tập chung trang 63

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SGK (KNTT) Toán 9 Kết nối tri thức – Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.