• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 10 – Chân trời / Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Ngày 14/08/2022 Thuộc chủ đề:Giải bài tập Toán 10 – Chân trời Tag với:GBT chuong 5 Toan 10 - CT

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

===========

Giải bài 1 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho hình bình hành ABCD có O là giao điểm hai đường chéo và một điểm M tùy ý. Chứng minh rằng:

a) \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0;} \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \)

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

a) Thay vectơ \(\overrightarrow {DC}  = \overrightarrow {AB} \)

b) Bước 1: chèn điểm O: \(\overrightarrow {AB}  = \overrightarrow {AO}  + \overrightarrow {OB} \)

Bước 2: Sử dụng tính chất trung điểm: \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \) (với M là trung điểm của đoạn thẳng AB)

Lời giải chi tiết

a)  ABCD là hình bình hành nên \(\overrightarrow {DC}  = \overrightarrow {AB} \)

\( \Rightarrow \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {BA}  + \overrightarrow {AB}  = \overrightarrow {BB}  = \overrightarrow 0 \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \left( {\overrightarrow {MB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD}  + \overrightarrow {DC} } \right)\)

\(= \left( {\overrightarrow {MB}  + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA}  + \overrightarrow {DC}} \right)\)

\(= \overrightarrow {MB}  + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0} \))


Giải bài 2 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tứ giác ABCD, thực hiện cả phép cộng và trừ vectơ sau:

a)  \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA}\);

b)  \(\overrightarrow {AB}  – \overrightarrow {AD} \)

c) \(\overrightarrow {CB}  – \overrightarrow {CD} \).

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Cho hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\). Từ một điểm A tùy ý, lấy hai điểm B, C sao cho  \(\overrightarrow {AB}  = \overrightarrow a \), \(\overrightarrow {BC}  = \overrightarrow b \). Khi đó \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow a\), \(\overrightarrow b\) được kí hiệu là \(\overrightarrow a  + \overrightarrow b \).

Vậy \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Hiệu của hai vecto \(\overrightarrow a  – \overrightarrow b  = \overrightarrow a  + \left( { – \overrightarrow b } \right)\)

Lời giải chi tiết

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right) = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 \)

b) \(\overrightarrow {AB}  – \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DA}  + \overrightarrow {AB}  = \overrightarrow {DB} \)

c) \(\overrightarrow {CB}  – \overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {DC}  = \overrightarrow {DC}  + \overrightarrow {CB}  = \overrightarrow {DB} \)


Giải bài 3 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tam giác đều ABC cạnh bằng a. Tính độ dài các vectơ:

a) \(\overrightarrow {BA}  + \overrightarrow {AC} \);

b) \(\overrightarrow {AB}  + \overrightarrow {AC} \);

c) \(\overrightarrow {BA}  – \overrightarrow {BC} \).

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

a) Sử dụng quy tắc ba điểm \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

b)

Bước 1: Dựng hình bình hành ABDC, xác định giao điểm của 2 đường chéo là điểm O.

Bước 2: Xác định vectot tổng \(\overrightarrow {AB}  + \overrightarrow {AC}  = ?\)

Bước 3: Tính độ dài của vecto tìm được

c)

Bước 1: Thay thế vecto đối \(\overrightarrow {AB}  =  – \overrightarrow {BA} \)

Bước 2: Sử dụng quy tắc ba điểm tính vecto tổng

Bước 3: Tính độ dài

Lời giải chi tiết

a)  \(\)\(\overrightarrow {BA}  + \overrightarrow {AC}  = \overrightarrow {BC}  \Rightarrow \left| {\overrightarrow {BC} } \right| = BC = a\)

b) Dựng hình bình hành ABDC, giao điểm của hai đường chéo là O ta có:

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)

\(AD = 2AO = 2\sqrt {A{B^2} – B{O^2}}  = 2\sqrt {{a^2} – {{\left( {\frac{a}{2}} \right)}^2}}  = a\sqrt 3 \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD = a\sqrt 3 \)

c) \(\overrightarrow {BA}  – \overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {CB}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} \)

\( \Rightarrow \left| {\overrightarrow {BA}  – \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\)


Giải bài 4 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Chứng minh rằng:

a) \(\overrightarrow {OA}  – \overrightarrow {OB}  = \overrightarrow {OD}  – \overrightarrow {OC;} \)

b) \(\overrightarrow {OA}  – \overrightarrow {OB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

Vận dụng quy tắc hiệu: \( \overrightarrow {OA} – \overrightarrow {OB} = \overrightarrow {BA}  \)

Lời giải chi tiết

a) \(\overrightarrow {OA}  – \overrightarrow {OB}  = \overrightarrow {BA} \)

\(\overrightarrow {OD}  – \overrightarrow {OC}  = \overrightarrow {CD} \)

Do ABCD là hình bình hành nên \(\overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, \(\overrightarrow {OA}  – \overrightarrow {OB}  = \overrightarrow {OD}  – \overrightarrow {OC} \)

b)  \(\overrightarrow {OA}  – \overrightarrow {OB}  + \overrightarrow {DC}  = (\overrightarrow {OD}  – \overrightarrow {OC})  + \overrightarrow {DC}  \\= \overrightarrow {CD}  + \overrightarrow {DC} = \overrightarrow {CC} = \overrightarrow 0 \)


Giải bài 5 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho ba lực \(\overrightarrow {{F_1}}  = \overrightarrow {MA} ,\overrightarrow {{F_2}}  = \overrightarrow {MB} \) và \(\overrightarrow {{F_3}}  = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M  và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là 10 N và \(\widehat {AMB} = 90^\circ \) Tìm độ lớn của lực \(\overrightarrow {{F_3}} \).

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

Cho hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\). Từ một điểm A tùy ý, lấy hai điểm B, C sao cho  \(\overrightarrow {AB}  = \overrightarrow a \), \(\overrightarrow {BC}  = \overrightarrow b \). Khi đó \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow a\), \(\overrightarrow b\) được kí hiệu là \(\overrightarrow a  + \overrightarrow b \).

Vậy \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Hiệu của hai vecto \(\overrightarrow a  – \overrightarrow b  = \overrightarrow a  + \left( { – \overrightarrow b } \right)\)

Lời giải chi tiết

Ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) cùng tác dụng vào M và vật đứng yên nên hợp lực của chúng có giá trị bằng không, hay: \(\)\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Dựng hình bình hành \(MADB\), khi đó: \(\overrightarrow {MA}  + \overrightarrow {MB}= \overrightarrow {MD}\)

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

\( \Rightarrow \overrightarrow {MD}  + \overrightarrow {MC}  = \overrightarrow {0}\)

\( \Rightarrow \overrightarrow {MD}, \overrightarrow {MC}\) là hai vecto đối nhau

\( \Rightarrow MD =MC\)

Xét hình bình hành MADB, ta có:

AM=AB và \(\widehat {AMB} = 90^\circ \)

\( \Rightarrow\) MADB là hình vuông, cạnh \(AB=10\)

\( \Rightarrow MC = MD = AB. \sqrt{2} = 10\sqrt{2}\)

Vậy độ lớn của lực \(\overrightarrow {{F_3}} \) là \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MC} } \right| = MC = 10\sqrt 2 \) (N)


Giải bài 6 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Khi máy bay nghiêng cánh một góc \(\alpha \), lực \(\overrightarrow F \) của không khí tác động vuông góc với cánh và bằng tổng của lực nâng \(\overrightarrow {{F_1}} \) và lực cản \(\overrightarrow {{F_2}} \) (Hình 16). Cho biết \(\alpha  = 30^\circ \)và \(\left| {\overrightarrow F } \right| = a\). Tính \(\left| {\overrightarrow {{F_1}} } \right|\) và \(\left| {\overrightarrow {{F_2}} } \right|\) theo a.

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

Kí hiệu các điểm như hình dưới.

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Lời giải chi tiết

Khi đó các lực \(\overrightarrow F ,\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) lần lượt là \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AB} \)

\(\alpha  = \widehat {{\rm{BAx}}} = 30^\circ \) \( \Rightarrow \widehat {CAB} = 60^\circ \)

\(AB = AC.c{\rm{os}}\widehat {CAB} = a.c{\rm{os60}}^\circ {\rm{ = }}\frac{a}{2} \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AB} } \right| = \frac{a}{2}\)

\(AD = BC = AC.\sin \widehat {CAB} = a.\sin 60^\circ  = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {AD} } \right| = AD = \frac{{a\sqrt 3 }}{2}\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \frac{{a\sqrt 3 }}{2};\left| {\overrightarrow {{F_2}} } \right| = \frac{a}{2}\)


Giải bài 7 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K  thỏa mãn \(\overrightarrow {KA}  + \overrightarrow {KC}  = \overrightarrow 0 ;\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 ;\overrightarrow {HA}  + \overrightarrow {HD}  + \overrightarrow {HC}  = \overrightarrow 0 \). Tính độ dài các vectơ \(\overrightarrow {KA} ,\overrightarrow {GH} ,\overrightarrow {AG} \).

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

Cho hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\). Từ một điểm A tùy ý, lấy hai điểm B, C sao cho  \(\overrightarrow {AB}  = \overrightarrow a \), \(\overrightarrow {BC}  = \overrightarrow b \). Khi đó \(\overrightarrow {AC} \) được gọi là tổng của hai vecto \(\overrightarrow a\), \(\overrightarrow b\) được kí hiệu là \(\overrightarrow a  + \overrightarrow b \).

Vậy \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Lời giải chi tiết

Ta có \(AC = AB\sqrt 2  = a\sqrt 2 \)

+) \(\overrightarrow {KA}  + \overrightarrow {KC}  = \overrightarrow 0 \) ,

Suy ra K là trung điểm AC \( \Rightarrow AK = \frac{1}{2}.a\sqrt 2  = \frac{{a\sqrt 2 }}{2}\)

+) \(\overrightarrow {HA}  + \overrightarrow {HD}  + \overrightarrow {HC}  = \overrightarrow 0 \), suy ra H là trọng tâm của tam giác ADC

\(\Rightarrow DH = \frac{2}{3}DK = \frac{1}{3}DB\) (1)

+) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \), suy ra G là trọng tâm của tam giác ABC

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

\(\Rightarrow BG = \frac{2}{3}BK = \frac{1}{3}BD\) (2)

\((1,2) \Rightarrow HG = \frac{1}{3}BD=\frac{{a\sqrt 2 }}{3}\)

Mà \(KG = KH = \frac{1}{2}HG= \frac{{a\sqrt 2 }}{6}\) (2)

\(\Rightarrow  AG = \sqrt {A{K^2} + G{K^2}}  = \sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{6}} \right)}^2}}  = \frac{{a\sqrt 5 }}{3}\)

\( \Rightarrow \left| {\overrightarrow {AG} } \right| = \frac{{a\sqrt 5 }}{3}\)

Vậy \(\left|\overrightarrow {KA}\right| =\frac{{a\sqrt 2 }}{2} ,\left|\overrightarrow {GH}\right|=\frac{{a\sqrt 2 }}{3} ,\left|\overrightarrow {AG}\right|=\frac{{a\sqrt 5 }}{3} \).


Giải bài 8 trang 93 SGK Toán 10 Chân trời sáng tạo tập 1

Một con tàu có vectơ vận tốc chỉ theo hướng nam, vận tốc của dòng nước là một vectơ theo hướng đông như hình 17. Tính độ dài vectơ tổng của hai vectơ nói trên.

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Hướng dẫn giải chi tiết Bài 8

Phương pháp giải

Gọi vecto vận tốc của tàu là \(\overrightarrow {AB} \), vecto vận tốc của dòng nước là vecto \(\overrightarrow {BC} \)

Giải bài tập Bài 2: Tổng và hiệu của hai vectơ (Chân trời)

Lời giải chi tiết

Ta có vecto tổng là \(\overrightarrow F  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Độ dài vecto tổng là \(\left| {\overrightarrow F } \right| = \left| {\overrightarrow {AC} } \right| = AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{30}^2} + {{10}^2}}  = 10\sqrt {10} \)(km/h)

Vậy độ dài vecto tổng là \(10\sqrt {10} \)(km/h).

 

Bài liên quan:

  1. Giải bài tập Cuối chương 5 (Chân trời)
  2. Giải bài tập Bài 4: Tích vô hướng của hai vectơ (Chân trời)
  3. Giải bài tập Bài 3: Tích của một số với một vectơ (Chân trời)
  4. Giải bài tập Bài 1: Khái niệm vectơ (Chân trời)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán lớp 10 – Sách Chân trời

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.