• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 / Giải SBT Đề kiểm tra Ôn tập chương 2 – Hình học 10

Giải SBT Đề kiểm tra Ôn tập chương 2 – Hình học 10

12/04/2018 by admin Để lại bình luận Thuộc chủ đề:Giải sách bài tập toán 10 Tag với:Giai sbt chuong 2 hinh hoc 10

Ôn tập chương 2: Đề kiểm tra – SBT Toán lớp 10 – Giải bài tập Đề 1, 2, 3 trang 106 Sách bài tập (SBT) Toán Hình 10.

Đề 1

Câu 1. (6 điểm) Tam giác ABC có cạnh \(BC = 2\sqrt 3 \), cạnh AC = 2 và \(\widehat C = {30^0}\).

a) Tính cạnh AB và sinA;

b) Tính diện tích S của tam giác ABC;

c) Tính chiều cao \({h_a}\) và trung tuyến \({m_a}\)

Gợi ý làm bài

a)

\(\eqalign{
& {c^2} = {a^2} + {b^2} – 2ab\cos C \cr
& = 12 + 4 – 8\sqrt 3 .cos{30^0} \cr} \)

\({c^2} = 4 =  > c = 2\) hay AB = 2.

\(\sin A = {{a\sin C} \over c} = {{2\sqrt 3 .{1 \over 2}} \over 2} = {{\sqrt 3 } \over 2}\)

b) \(S = {1 \over 2}ab\sin C = {1 \over 2}.2\sqrt 3 .2.{1 \over 2} = \sqrt 3 \)

c) \({h_a} = {{2S} \over a} = {{2\sqrt 3 } \over {2\sqrt 3 }} = 1,{m_a} = 1\)

Câu 2. (4 điểm) Cho tam giác ABC có cạnh BC, AC và AB có độ dài lần lượt là a = 3, b = 4, c = 6.

a) Tính cô sin của góc lớn nhất của tam giác ABC;

b) Tính đường cao ứng với cạnh lớn nhất.

Đáp án

a)Cạnh c lớn nhất suy ra góc C lớn nhất

\(\cos C = {{{a^2} + {b^2} – {c^2}} \over {2ab}} = {{9 + 16 – 36} \over {24}} = {{ – 11} \over {24}}\)

b) \({h_a} = {{2S} \over c} = {{ab\sin C} \over c} = {{3.4.\sqrt {455} } \over {6.24}} = {{\sqrt {455} } \over {12}}\)


Đề 2

Câu 1. (6 điểm)

Cho tam giác ABC có BC = a, CA = b, AB = c.

a) Chứng minh rằng: \(\overrightarrow {AB} .\overrightarrow {AC}  = {{{b^2} + {c^2} – {a^2}} \over 2}\)

b) Chứng minh rằng: \(\overrightarrow {AB} .\overrightarrow {AC}  = A{I^2} – {{B{C^2}} \over 4}\) với I là trung điểm của BC;

c) Gọi G là trọng tâm của tam giác ABC, với M là điểm bất kì trong mặt phẳng, chứng minh hệ thức sau:

\(M{A^2} + M{B^2} + M{C^2} = G{A^2} + G{B^2} + G{C^2} + 3M{G^2}\)

Giải

a) Ta có: \(\overrightarrow {BC}  = \overrightarrow {AC}  – \overrightarrow {AB} \)

\(\eqalign{
& = > B{C^2} = {\overrightarrow {BC} ^2} = {(\overrightarrow {AC} – \overrightarrow {AB} )^2} \cr
& = A{C^2} + A{B^2} – 2\overrightarrow {AC} .\overrightarrow {AB} \cr} \)

\( \Leftrightarrow \overrightarrow {AC} .\overrightarrow {AB}  = {{A{C^2} + A{B^2} – B{C^2}} \over 2}\)

\(=  > \overrightarrow {AC} .\overrightarrow {AB}  = {{{b^2} + {c^2} – {a^2}} \over 2}\)

b) Ta có: \(\overrightarrow {AB}  = \overrightarrow {AI}  + \overrightarrow {IB} \) và \(\overrightarrow {AC}  = \overrightarrow {AI}  + \overrightarrow {IC}  = \overrightarrow {AI}  – \overrightarrow {IB} \)

\( =  > \overrightarrow {AC} .\overrightarrow {AB}  = A{I^2} – I{B^2} = A{I^2} – {{B{C^2}} \over 4}\) (I là trung điểm của BC)

c) Ta có:

\(M{A^2} + M{B^2} + M{C^2} = G{A^2} + G{B^2} + G{C^2} + 3M{G^2}\)

\( \Leftrightarrow (M{A^2} – G{A^2}) + (M{B^2} – G{B^2}) + (M{C^2} – G{C^2}) = 3M{G^2}\)

\( \Leftrightarrow (\overrightarrow {MA}  – \overrightarrow {GA)} (\overrightarrow {MA}  + \overrightarrow {GA} ) + (\overrightarrow {MB}  – \overrightarrow {GB} )(\overrightarrow {MB}  + \overrightarrow {GB} ) + (\overrightarrow {MC}  – \overrightarrow {GC} )(\overrightarrow {MC}  + \overrightarrow {GC} ) = 3M{G^2}\)

\( \Leftrightarrow \overrightarrow {MG} (\overrightarrow {MA}  + \overrightarrow {GA}  + \overrightarrow {MB}  + \overrightarrow {GB}  + \overrightarrow {MC}  + \overrightarrow {GC} ) = 3M{G^2}\)

\(\Leftrightarrow \overrightarrow {MG} {\rm{[}}(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} ) + (\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} ){\rm{]}} = 3M{G^2}\)

\( \Leftrightarrow \overrightarrow {MG} (3\overrightarrow {MG}  + \overrightarrow 0 ) = 3M{G^2}\)

\(\Leftrightarrow 3{\overrightarrow {MG} ^2} = 3M{G^2}\) (đúng)

Vậy đẳng thức được chứng minh.

Câu 2. ( 4 điểm)

Trong mặt phẳng tọa độ Oxy, cho A(1;-1) và B(3;0) là hai đỉnh của hình vuông ABCD. Tìm tọa độ của các đỉnh còn lại.

Bài giải

*Gọi \(C({x_C};{y_C})\), ta có: \(\overrightarrow {BC}  = ({x_C} – 3;{y_C});\overrightarrow {AB}  = (2;1)\)

Vì ABCD là hình vuông

=> \(\left\{ \matrix{
AB \bot BC \hfill \cr
AB = BC \hfill \cr} \right. = > \left\{ \matrix{
2{x_C} – 6 + {y_C} = 0 \hfill \cr
{({x_C} – 3)^2} + y_C^2 = 5 \hfill \cr} \right.\)

\(\eqalign{
& = > \left\{ \matrix{
{y_C} = 6 – 2{x_C} \hfill \cr
{({x_C} – 3)^2} + 36 – 24{x_C} + 4x_C^2 = 5 \hfill \cr} \right. \cr
& = > \left\{ \matrix{
{y_C} = 2 \hfill \cr
{x_C} = 2 \hfill \cr} \right. \vee \left\{ \matrix{
{y_C} = – 2 \hfill \cr
{x_C} = 4 \hfill \cr} \right. \cr} \)

*Gọi \(D({x_D};{y_D})\)

Với C(2;2)

=>  \(\overrightarrow {CD} = \overrightarrow {BA} \Leftrightarrow \left\{ \matrix{
{x_D} – 2 = – 2 \hfill \cr
{y_D} – 2 = – 1 \hfill \cr} \right. = > \left\{ \matrix{
{x_D} = 0 \hfill \cr
{y_D} = 1 \hfill \cr} \right.\)

Với C(4;-2)

=> \(\overrightarrow {CD} = \overrightarrow {BA} \Leftrightarrow \left\{ \matrix{
{x_D} – 4 = – 2 \hfill \cr
{y_D} + 2 = – 1 \hfill \cr} \right. = > \left\{ \matrix{
{x_D} = 2 \hfill \cr
{y_D} = – 3 \hfill \cr} \right.\)

Vậy C(2; 2), D(0; 1) hay C(4; -2), D(2;-3).


Đề 3

Câu 1. (8 điểm) Cho tam giác ABC có a = 13, b = 14, c = 15.

a)Tính diện tích tam giác ABC;

b)Tính cosB, góc B nhọn hay tù?

c)Tính bán kính đường tròn ngoại tiếp và nội tiếp của tam giác;

d)Tính độ dài trung tuyến \({m_b}\)

Bài giải

a) Dùng công thức Hê – rông để tính diện tích tam giác ABC, ta có

\(p = {1 \over 2}(13 + 14 + 15) = 21\)

\(\eqalign{
& S = \sqrt {p(p – a)(p – b)(p – c)} \cr
& = \sqrt {21(21 – 13)(21 – 14)(21 – 15)} = 84 \cr} \)

b) \(\cos B = {{{a^2} + {c^2} – {b^2}} \over {2ac}} = {{{{13}^2} + {{15}^2} – {{14}^2}} \over {2.13.15}} = {{33} \over {65}}\)

cosB > 0 nên góc B nhọn.

c) Ta có \(S = {{abc} \over {4R}} =  > R = {{abc} \over {4S}} = {{13.14.15} \over {4.84}} = {{65} \over 8}\)

Ta có: \(S = p.r =  > r = {S \over p} = {{84} \over {21}} = 4\)

d) \(m_b^2 = {{2({a^2} + {c^2}) – {b^2}} \over 4} = {{2({{13}^2} + {{15}^2}) – {{14}^2}} \over 4} = 148\)

Vậy \({m_b} = \sqrt {148}  = 2\sqrt {37} \)

Câu 2. (2 điểm) Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-1;2), B(2;0), C(-3;1). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.

HD giải

I(x;y) là tâm đường tròn ngoại tiếp tam giác ABC

\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
IA = IB \hfill \cr
IA = IC \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
I{A^2} = I{B^2} \hfill \cr
I{A^2} = I{C^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{(x + 1)^2} + {(y – 2)^2} = {(x – 2)^2} + {y^2} \hfill \cr
{(x + 1)^2} + {(y – 2)^2} = {(x + 3)^2} + {(y – 1)^2} \hfill \cr} \right. \cr} \)

\( \Leftrightarrow \left\{ \matrix{
6x – 4y = – 1 \hfill \cr
4x + 2y = – 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = – {{11} \over {14}} \hfill \cr
y = – {{13} \over {14}} \hfill \cr} \right.\)

Vậy \(I\left( { – {{11} \over {14}}; – {{13} \over {14}}} \right)\)

Bài liên quan:

  • Giải SBT Ôn tập chương 2: Đề toán tổng hợp – Hình học 10
  • Giải SBT Câu hỏi và bài tập Ôn tập Chương 2 – Hình học 10
  • Giải SBT Bài 3: Các hệ thức lượng trong tam giác và giải tam giác – Chương 2 – Hình học 10
  • Giải SBT Bài 2: Tích vô hướng của hai vec tơ – Chương 2 – Hình học 10
  • Giải SBT Bài 1: Giá trị lượng giác của một góc bất kì từ 0 độ đến 180 độ – Chương 2 – Hình học 10

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.