• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 - Kết nối / Giải bài 4.10 trang 51 SBT Toán 10 – KN

Giải bài 4.10 trang 51 SBT Toán 10 – KN

Ngày 15/09/2022 Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Bài 8. Tổng và hiệu của hai vectơ - SBT Toán 10 KNTT

Giải bài 4.10 trang 51 SBT Toán 10 – KN – KẾT NỐI TRI THỨC
CỦA BÀI HỌC: Bài 8. Tổng và hiệu của hai vectơ – SBT Toán 10 KNTT

=======

Đề bài

Cho tam giác \(ABC.\) Gọi \(D,\,\,E,\,\,F\) theo thứ tự là trung điểm của các cạnh \(BC,\,\,CA,\,\,AB.\)

a) Xác định vectơ \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE} \)

b) Xác định điểm \(M\) thỏa mãn \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {MA} .\)

c) Chứng minh rằng \(\overrightarrow {MC}  = \overrightarrow {AB} .\)

Phương pháp giải

– Chứng minh \(\overrightarrow {AF}  = \overrightarrow {FB} ,\) \(\overrightarrow {BD}  = \overrightarrow {DC} \)

– Áp dụng quy tắc hình bình hành với hai vectơ \(\overrightarrow {CE} \) và \(\overrightarrow {CD} \)

– Chứng minh tứ giác \(ABCM\) là hình bình hành

Lời giải chi tiết

Giải bài 4.10 trang 51 SBT Toán 10 - KN 1

a)      Ta có: \(DF\) là đường trung bình của \(\Delta ABC\)

\( \Rightarrow \) \(\overrightarrow {CE}  = \overrightarrow {DF} \)

\( \Rightarrow \) tứ giác \(CDFE\) là hình bình hành.

Ta có: \(D\) và \(F\) lần lượt là trung điểm của \(BC\) và \(AB\)

\( \Rightarrow \) \(\overrightarrow {AF}  = \overrightarrow {FB} ,\) \(\overrightarrow {BD}  = \overrightarrow {DC} \) 

Ta có: \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {AF}  + \overrightarrow {CD}  + \overrightarrow {CE}  = \overrightarrow {AF}  + \overrightarrow {CF}  = \overrightarrow {CF}  + \overrightarrow {FB}  = \overrightarrow {CB} \)

b)     Theo câu a, ta có: \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {CB} \)

mặt khác \(\overrightarrow {AF}  – \overrightarrow {BD}  + \overrightarrow {CE}  = \overrightarrow {MA} .\)

nên \(\overrightarrow {CB}  = \overrightarrow {MA} \)

\( \Rightarrow \) tứ giác \(ABCM\) là hình bình hành

\( \Rightarrow \) \(M\) là điểm đối xứng với \(B\) qua \(E\)

c)      Theo câu b, ta có: tứ giác \(ABCM\) là hình bình hành

\( \Rightarrow \) \(\overrightarrow {MC}  = \overrightarrow {AB} .\)

 

============

Thuộc chủ đề:Giải sách bài tập toán 10 – Kết nối

Bài liên quan:

  1. Giải bài 4.12 trang 51 SBT Toán 10 – KN
  2. Giải bài 4.11 trang 51 SBT Toán 10 – KN
  3. Giải bài 4.9 trang 50 SBT Toán 10 – KN
  4. Giải bài 4.8 trang 50 SBT Toán 10 – KN
  5. Giải bài 4.7 trang 50 SBT Toán 10 – KN

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.