• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Đề thi Giữa HKI môn Toán / Bộ đề 3 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

Bộ đề 3 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

Ngày 20/12/2021 Thuộc chủ đề:Đề thi Giữa HKI môn Toán Tag với:De thi GHK1 Toan 9

Bộ đề 3 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

ĐỀ ÔN THI GIỮA HK1

MÔN: TOÁN

NĂM HỌC : 2021 – 2022

Đề 1

Phần I.Trắc nghiệm 

Câu 1.Căn bậc hai số học của 9 là

A. -3. B. 3. C. 81. D. -81.

Câu 2.Biểu thức \(\sqrt {1 – 2x} \) xác định khi:

A. \(x > \frac{1}{2}\) B. \(x \ge \frac{1}{2}\) C. \(x < \frac{1}{2}\) D. \(x \le \frac{1}{2}\)

Câu 3: Hàm số y =(2m+6)x + 5 là hàm số bậc nhất khi

A. x > -3 ;                     B. m \(\ne \)  3;                       C. m \(\ne \) – 3;                     D. x < 3.

Câu 4: Hàm số y =(-m+3)x -15 là hàm số đồng biến khi

A. m > -3 ;                    B. m \(\ne \)  3;                       C. m \(\ge \) 3;            D. m < 3

Câu 5.Biểu thức \(\sqrt {{{\left( {3 – 2x} \right)}^2}}\) bằng

A. 3 – 2x. B. 2x – 3. C. ‌\(\left| {2x – 3} \right|\) D. 3 – 2x và 2x – 3.

Câu 6.Giá trị của biểu thức \(c{\rm{o}}{{\rm{s}}^{\rm{2}}}{20^0} + c{\rm{o}}{{\rm{s}}^{\rm{2}}}{40^0} + c{\rm{o}}{{\rm{s}}^{\rm{2}}}{50^0} + c{\rm{o}}{{\rm{s}}^{\rm{2}}}{70^0}\) bằng

A. 1. B. 2. C. 3. D. 0.

Câu 7.Giá trị của biểu thức \(\frac{1}{{2 + \sqrt 3 }} + \frac{1}{{2 – \sqrt 3 }}\) bằng

A. \(\frac{1}{2}\) B. 1. C. -4. D. 4.

Câu 8.Cho tam giác ABC vuông tại A có AB = 18; AC = 24. Bán kính đường tròn ngoại tiếp tam giác đó bằng

A. 30. B. 20. C. 15. D. 15 .

Câu 9.Trong các hàm số sau, hàm số nào là hàm số bậc nhất ?

A. \(y = \sqrt {\frac{x}{2}} + 4\) B. \(y = \frac{{\sqrt 2 x}}{2} – 3\) C. \(y = \frac{{ – 2}}{x} + 1\) D. \(y = – \frac{{3\sqrt x }}{5} + 2\)

Câu 10.Trong các hàm số sau, hàm số nào đồng biến ?

A. y = 2 – x              B. \(y = – \frac{1}{2}x + 1\)                       C. \(y = \sqrt 3 – \sqrt 2 \left( {1 – x} \right)\)              D. y = 6 – 3(x – 1).

Câu 11.Điểm nào trong các điểm sau thuộc đồ thị hàm số y = 1 – 2x ?

A. (-2; -3). B. (-2; 5). C. (0; 0). D. (2; 5).

Câu 12.Nếu hai đường thẳng y = -3x + 4 (d1) và y = (m+1)x + m (d2) song song với nhau thì m bằng

A. – 2. B. 3. C. – 4. D. – 3.

Phần II. Tự luận

Câu 1: Cho biểu thức: P = \(\left( {\frac{{x\sqrt x – 1}}{{x – \sqrt x }} – \frac{{x\sqrt x + 1}}{{x + \sqrt x }}} \right):\left[ {\frac{{2(x – 2\sqrt x + 1)}}{{x – 1}}} \right]\)

Rút gọn P

Câu 2:  Cho nửa đường tròn (O) đường kính AB. Vẽ các tiếp tuyến Ax, By về nửa mặt phẳng bờ AB chứa nửa đường tròn. Trên Ax và By theo thứ tự lấy M và N sao cho góc MON bằng 900

Gọi I là trung điểm của MN. Chứng minh rằng:

a) AB là tiếp tuyến của đường tròn (I;IO)

b) MO là tia phân giác của góc AMN

c) MN là tiếp tuyến của đường tròn đường kính AB

ĐÁP ÁN

Phần I. Trắc nghiệm 

1 2 3 4 5 6 7 8 9 10 11 12
B D C D C B D C B C B C

Phần II. Tự luận

Câu 1:

a)

– ĐKXĐ: \(0 \le x \ne 1\)

– Rút gọn

P =  \(\left( {\frac{{{{\sqrt x }^3} – {1^3}}}{{\sqrt x (\sqrt[{}]{x} – 1\left. {} \right)}} – \frac{{{{\sqrt x }^3} + {1^3}}}{{\sqrt x (\sqrt x + 1)}}} \right):\left( {\frac{{2.{{(\sqrt x – 1)}^2}}}{{{{\sqrt x }^2} – {1^2}}}} \right)\)

\( \Leftrightarrow P = \left( {\frac{{(\sqrt x – 1)(x + \sqrt x + 1)}}{{\sqrt x (\sqrt x – 1)}} – \frac{{(\sqrt x + 1)(x – \sqrt x + 1)}}{{\sqrt x (\sqrt x + 1)}}} \right):\left( {\frac{{2{{(\sqrt x – 1)}^2}}}{{(\sqrt x – 1)(\sqrt x + 1)}}} \right)\)

\( \Leftrightarrow P = \left( {\frac{{x + \sqrt x + 1}}{{\sqrt x }} – \frac{{x – \sqrt x + 1}}{{\sqrt x }}} \right):\left( {\frac{{2(\sqrt x – 1)}}{{\sqrt x + 1}}} \right)\)

\(\Leftrightarrow P = \left( {\frac{{x + \sqrt x + 1 – x + \sqrt x – 1}}{{\sqrt x }}} \right).\left( {\frac{{\sqrt x + 1}}{{2(\sqrt x – 1)}}} \right)\)

\( \Leftrightarrow P = \left( {\frac{{2\sqrt x }}{{\sqrt x }}} \right).\left( {\frac{{\sqrt x + 1}}{{2(\sqrt x – 1)}}} \right)\)

\( \Leftrightarrow P = \frac{{\sqrt x + 1}}{{\sqrt x – 1}}\)

……….

 

Đề 2

Phần I. Trắc nghiệm

Câu 1:   \(\sqrt {21 – 7x}\)có nghĩa khi

A. x \(\ge \)- 3;

B. x \(\le \) 3  ;

C. x > -3 ;

D. x <3.

Câu 2:  Rút gọn biểu thức \(\sqrt {(5 – \sqrt {13} ){}^2} \) được

A. 5 – \(\sqrt {13}\)

B. -5 – \(\sqrt {13}\)

C. \(\sqrt {13}\)- 5

D. \(\sqrt {13}\) + 5.

Câu 3:  Rút gọn các biểu thức  \(3\sqrt {3a} + 4\sqrt {12a} – 5\sqrt {27a}\) (a \(\ge \) 0) được

A. \(4\sqrt {3a}\)

B. \(26\sqrt {3a}\)

C. \(-26\sqrt {3a}\)

D.  \(-4\sqrt {3a}\)

Câu 4:  Giá trị biểu thức \(\sqrt {16} \cdot \sqrt {25} + \frac{{\sqrt {196} }}{{\sqrt {49} }}\) bằng

A.  28

B. 22

C.18

D. \(\sqrt 2\)

Câu 5:  Tìm x  biết \(\sqrt[3]{x} = – 1,5\). Kết quả

A.  x  = -1,5

B. -3,375

C. 3,375

D. -2,25

Câu 6:  Rút gọn biểu thức \(\sqrt[3]{27{{x}^{3}}}-\sqrt[3]{8{{x}^{3}}}+4x\) được

A.  23\(\sqrt[3]{x}\)

B. 23x

C. 15x

D.  5x

Câu 7:   Rút gọn biểu thức \(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (điều kiện \(4\le x<8\))  bằng

A. \(2\sqrt{x-4}\)

B. – 4

C. \(2\sqrt{x+4}\)

D. 4

Câu 8:   Khử mẫu của biểu thức \(\sqrt{\frac{2}{5{{a}^{3}}}}\) với a>0  được

A. \(\frac{\sqrt{10a}}{5{{a}^{2}}}\)

B. \(\frac{\sqrt{10a}}{5{{a}^{3}}}\)

C. \(\frac{\sqrt{2}}{5{{a}^{2}}}\)

D. \(\frac{2}{5{{a}^{2}}}\)

Câu 9:  Rút gọn biểu thức \(\frac{2}{\sqrt{7}-3}-\frac{2}{\sqrt{7}+3}\) được

A. \(\sqrt{7}+3\)

B. \(\sqrt{7}-3\)

C.-6

D.  0

Câu 10:  \(\sqrt{9{{x}^{2}}}=12\)

A.  x  = \(\pm 2\)

B. \(\pm 4\)

C. 2

D. -2

……….

Đề 3

Câu 1.  Rút gọn các biểu thức

a) A = \(5\sqrt 3 + \sqrt {27} – 3\sqrt {\frac{1}{3}} \)

b)  B = \(\sqrt {{{\left( {\sqrt 3 – 1} \right)}^2}} – \sqrt {4 + 2\sqrt 3 } \)

c) C = \(\frac{{\sqrt {{y^3}} – 1}}{{y + \sqrt y + 1}} – \frac{{y + 3\sqrt y + 2}}{{\sqrt y + 1}}\) (với y \( \ge\) 0).

Câu 2.  Cho hàm số y = (m – 1) x +3 (với m là tham số).

a) Xác định m biết M(1; 4) thuộc đồ thị của hàm số trên.

b) Vẽ đồ thị của hàm số trên với m = 2.

Câu 3.  Tìm x biết:

a)  \(\sqrt{{{x}^{2}}+4x+4}=1\);

b)  \(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3\).

ĐÁP ÁN

Câu 1:

a) A = \(5\sqrt{3}+\sqrt{27}-3\sqrt{\frac{1}{3}}\)

A = \(5\sqrt{3}+\sqrt{9.3}-\sqrt{{{3}^{2}}.\frac{1}{3}}=5\sqrt{3}+3\sqrt{3}-\sqrt{3}\)

A =\(7\sqrt{3}\)

b) B = \(\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}}-\sqrt{4+2\sqrt{3}}\)

\(\sqrt{{{\left( \sqrt{3}-1 \right)}^{2}}}=\left| \sqrt{3}-1 \right|=\sqrt{3}-1\) vì \(\sqrt{3}>1\)

\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{{{\left( \sqrt{3}+1 \right)}^{2}}}=\left| \sqrt{3}+1 \right|=\sqrt{3}+1\)

Do đó B = \(\sqrt{3}-1-\left( \sqrt{3}+1 \right)=\sqrt{3}-1-\sqrt{3}-1=-2\)

c) C = \(\frac{\sqrt{{{y}^{3}}}-1}{y+\sqrt{y}+1}-\frac{y+3\sqrt{y}+2}{\sqrt{y}+1}\)  (với y \(\ge \) 0)

Phân tích các tử về dạng tích:

\(\sqrt{{{y}^{3}}}-1=\left( \sqrt{y}-1 \right)\left( y+\sqrt{y}+1 \right)\)

\(y+3\sqrt{y}+2=\left( y+\sqrt{y} \right)+\left( 2\sqrt{y}+2 \right)=\left( \sqrt{y}+1 \right)\left( \sqrt{y}+2 \right)\)

C = \(\frac{\left( \sqrt{y}-1 \right)\left( y+\sqrt{y}+1 \right)}{y+\sqrt{y}+1}-\frac{\left( \sqrt{y}+1 \right)\left( \sqrt{y}+2 \right)}{\sqrt{y}+1}\)=\(\sqrt{y}-1-\left( \sqrt{y}+2 \right)=-3\)

……….

 

Đề 4

Phần I. Trắc nghiệm

Câu 1:  Biểu thức  \(\sqrt {2x – 1}\)xác định khi:

A. \(x \le \frac{1}{2}\)

B. \(x \ge \frac{1}{2}\)

C. \(x < \frac{1}{2}\)

D. \(x > \frac{1}{2}\)

Câu 2:  Hàm số \(y = – 2x + 1\) có đồ thị là hình nào sau đây?

Bộ đề 3 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

Câu 3:  Giá trị của biểu thức \(\frac{1}{{2 + \sqrt 3 }} + \frac{1}{{2 – \sqrt 3 }}\) bằng

A. \(\frac{1}{2}\)

B. 1

C. 4

D. – 4

Câu 4:  Đường tròn là hình:

A. Không có trục đối xứng

B. Có một trục đối xứng

C. Có hai trục đối xứng

D. Có vô số trục đối xứng

Câu 5:  Trong các hàm số sau, hàm số nào đồng biến ?

A. y = 2 – x. B. y=-5x+1. C. \(y=(\sqrt{3}-1)x-\sqrt{2}\). D. y = 6 – 3(x – 1)

Câu 6:  Nếu hai đường thẳng y = -3x + 4 (d1) và y = (m+1)x + m (d2) song song với nhau thì m bằng

A. – 2. B. -4 C.  4. D. – 3.

Câu 7:  Trên hình 1.2 ta có:

Bộ đề 3 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

A. x = 5,4  và  y = 9,6

B. x = 5    và  y = 10

C. x = 10  và  y = 5

D. x = 9,6  và  y = 5,4

Câu 8:  Cho tam giác ABC vuông tại A có AB = 18; AC = 24. Bán kính đường tròn ngoại tiếp tam giác đó bằng

A. 30. B. 20. C. 15. D. 15\(\sqrt{2}\).

Câu 9:   Cho (O; 1 cm) và dây AB = 1 cm. Khoảng cách từ tâm O đến AB bằng

A. \(\frac{1}{2}\) cm. B. \(\frac{\sqrt{3}}{2}\) cm. C. \(\frac{\sqrt{3}}{3}\) cm. D. \(\frac{1}{\sqrt{3}}\) cm.

Câu 10:  Cho \(\alpha ={{35}^{O}};\beta ={{55}^{O}}\). Khi đó khẳng định nào sau đây là Sai?

A.  sin\(\alpha \) = sin\(\beta \) B. sin\(\alpha \) = cos\(\beta \) C. tan\(\alpha \)  = cot\(\beta \) D.  cos\(\alpha \)  = sin\(\beta \)

Bài liên quan:

  1. BỘ 46 ĐỀ GHK1 CÁC MÔN KHỐI THCS NĂM HỌC 2023 WORD file nen
  2. Đề thi Giữa Học Kỳ 1 môn Toán 9 – 2022 – 2023 – Đề 3 – file word
  3. Đề thi Giữa Học Kỳ 1 môn Toán 9 – 2022 – 2023 – Đề 2 – file word
  4. Đề thi Giữa Học Kỳ 1 môn Toán 9 – 2022 – 2023 – Đề 1 – file word
  5. Bộ đề 2 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022
  6. Bộ đề 1 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Đề 10 – Toán 12 – Giữa HK1 – (2024-2025) DDGVT.docx
  • Đề 9 – Toán 12 – Giữa HK1 – (2024-2025) DDGVT.docx
  • ĐỀ ÔN GIỮA HỌC KÌ 1 – TOÁN 12 2023 – 2024
  • 10 đề thi GHK1 Toán 10 – 2023 – new
  • DTH – ĐỀ SỐ 01 ÔN GK1 TOÁN 12 NH 2023-2024
  • BỘ ĐỀ KIỂM TRA TOÁN 11 KẾT NỐI TRI THỨC GIỮA HỌC KÌ 1 WORD
  • Tổng hợp Đề thi Giữa Học Kỳ 1 môn Toán 11 – 2022 – 2023 – file word
  • Đề thi Giữa Học Kỳ 1 môn Toán 12 – 2022 – Đề 2 – file word
  • Bộ đề 1 – thi giữa HK1 môn Toán 9 có đáp án năm 2021-2022
  • Bộ đề 1 – thi giữa HK1 môn Toán 8 có đáp án năm 2021-2022
  • Bộ đề 1 – thi giữa HK1 môn Toán 7 có đáp án năm 2021-2022
  • Đề thi giữa HK1 môn Toán 6 (Cánh Diều) có đáp án năm 2021-2022 – số 1
  • ĐỀ THI GIỮA HK1 TOÁN LỚP 5 CÓ ĐÁP ÁN – Số 1
  • Bộ ĐỀ THI GIỮA HK1 TOÁN LỚP 4 CÓ ĐÁP ÁN
  • Bộ ĐỀ THI GIỮA HK1 TOÁN LỚP 3 CÓ ĐÁP ÁN
  • ĐỀ THI GIỮA HK1 TOÁN LỚP 2 CÓ ĐÁP ÁN – Số 1
  • Đề thi Giữa HK1 môn Toán 12 – Đề 1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.