• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 9 - Kết nối / Giải SGK (KNTT) Toán 9: Luyện tập chung trang 78

Giải SGK (KNTT) Toán 9: Luyện tập chung trang 78

Ngày 25/07/2024 Thuộc chủ đề:Giải bài tập Toán 9 - Kết nối Tag với:Giải toán 9 tập 2 kết nối

Giải chi tiết Giải SGK (KNTT) Toán 9: Luyện tập chung trang 78 – SÁCH GIÁO KHOA TOÁN 9 KẾT NỐI TRI THỨC – 2024

================

Giải bài tập Toán 9 Luyện tập chung trang 78

Bài tập

Bài 9.13 trang 79 Toán 9 Tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng BOC^=120°và OCA^=20°. Tính số đo các góc của tam giác ABC.

Lời giải:

Bài 9.13 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vì tam giác ABC nội tiếp đường tròn (O) nên OA = OB = OC.

Xét ∆OAC có OA = OC nên ∆OAC cân tại O, suy ra OAC^=OCA^=20°.

Lại có OAC^+OCA^+AOC^=180° (tổng các góc của một tam giác)

Suy ra AOC^=180°−OAC^−OCA^=180°−20°−20°=140°.

Xét đường tròn (O) có:

⦁ ABC^,AOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AC nên:

ABC^=12AOC^=12⋅140°=70°.

⦁ BAC^,BOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC nên:

BAC^=12BOC^=12⋅120°=60°.

Xét ∆ABC có: BAC^+ABC^+ACB^=180° (tổng các góc của một tam giác)

Suy ra ACB^=180°−BAC^−ABC^=180°−60°−70°=50°.

Vậy BAC^=60°;ABC^=70°;ACB^=50°.

Bài 9.14 trang 79 Toán 9 Tập 2: Cho ABC là tam giác đều có cạnh bằng 4 cm. Tính bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC.

Lời giải:

Bài 9.14 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Vẽ đường tròn (O) ngoại tiếp tam giác đều ABC.

Vì tam giác ABC đều nên đường tròn (O) có tâm là trọng tâm của tam giác và có bán kính là R=33⋅4=433(cm).

Mặt khác, ta đã biết đường tròn nội tiếp tam giác đều có tâm là trọng tâm của tam giác đó, nên trọng tâm O cũng là tâm đường tròn nội tiếp tam giác đó.

Khi đó bán kính đường tròn nội tiếp tam giác ABC là r=36⋅4=233(cm).

Bài 9.15 trang 79 Toán 9 Tập 2: Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như Hình 9.26.

chương 09

a) Tính bán kính R của đường tròn (O).

b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.

Lời giải:

a) Đường tròn (O) ngoại tiếp tam giác đều ABC nên có bán kính là R=33⋅3=3(cm).

b)

chương 09

Do ∆ABC là tam giác đều nên BAC^=ABC^=60°.

Xét đường tròn (O) có BAC^,BOC^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BC nên BAC^=12BOC^, suy ra BOC^=2BAC^=2⋅60°=120°.

Do đó cung nhỏ BC có số đo bằng 120°.

Diện tích hình quạt tròn bán kính R=3cm ứng với cung nhỏ BC có số đo bằng 120° là:

Sq=nπR2360=120⋅π⋅32360=π(cm2).

Gọi H là giao điểm của AO và BC. Khi đó AH vừa là đường trung trực, vừa là đường phân giác, cũng là đường cao của tam giác.

Vì BO là phân giác của góc ABC nên OBH^=12ABC^=12⋅60°=30°.

Xét ∆OBH vuông tại H, có:

OH=OB⋅sinOBH^=R⋅sin30°=32(cm).

Diện tích của tam giác OBC là:

SOBC=12OH⋅BC=12⋅32⋅3=334(cm2).

Gọi S là diện tích viên phân giới hạn bởi dây cung BC và cung nhỏ BC.

Ta có: S=SOBC−Sq=π−334(cm2).

Vậy hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC có diện tích bằng π−334(cm2).

Bài 9.16 trang 79 Toán 9 Tập 2: Trong một khu vui chơi có dạng hình tam giác đều với cạnh bằng 60 m, người ta muốn tìm một vị trí đặt bộ phát sóng wifi sao cho ở chỗ nào trong khu vui chơi đó đều có thể bắt được sóng. Biết rằng bộ phát sóng đó có tầm phát sóng tối đa là 50 m, hỏi rằng có thể tìm được vị trí để đặt bộ phát sóng như vậy hay không?

Lời giải:

Bài 9.16 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Gọi O là vị trí đặt cục phát wifi; ba điểm A, B, C là ba đỉnh của khu vui chơi có dạng hình tam giác đều cạnh bằng 60 m. Khi đó AB = BC = CA = 60 m.

Để vị trí đặt bộ phát sóng wifi sao cho ở chỗ nào trong khu vui chơi đó đều có thể bắt được sóng thì O là tâm đường tròn ngoại tiếp tam giác ABC.

Do đó bán kính đường tròn ngoại tiếp tam giác ABC là R=33⋅60=203≈34,64(m).

Ta thấy R < 50 (m) nên bộ phát sóng đặt ở O là tâm đường tròn ngoại tiếp tam giác ABC thì cả khu vui chơi đó đều có thể bắt được sóng.

Bài 9.17 trang 79 Toán 9 Tập 2: Người ta vẽ bản quy hoạch của một khu định cư được bao xung quanh bởi ba con đường thẳng lập thành một tam giác với độ dài các cạnh là 900 m, 1 200 m và 1 500 m (H.9.27).

Bài 9.17 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Tính chu vi và diện tích của phần đất giới hạn bởi tam giác trên.

b) Họ muốn xây dựng một khách sạn bên trong khu dân cư cách đều cả ba con đường

đó. Hỏi khi đó khách sạn sẽ cách mỗi con đường một khoảng là bao nhiêu?

Lời giải:

Bài 9.17 trang 79 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Gọi A, B, C là ba đỉnh của khu dân cư sao cho AB = 900 m, BC = 1 500 m và AC = 1 200 m.

Xét ∆ABC có:

⦁ AB2 + AC2 = 9002 + 1 2002 = 2 250 000;

⦁ BC2 = 1 5002 = 2 250 000.

Do đó AB2 + AC2 = BC2, nên theo định lí Pythagore đảo ta có ∆ABC vuông tại A.

a) Chu vi của phần đất giới hạn bởi tam giác ABC là:

AB + BC + CA = 900 + 1 500 + 1 200 = 3 600 (m).

Diện tích của phần đất giới hạn bởi tam giác trên là:

SABC=12⋅AB⋅AC=12⋅900⋅1200=540000(m2).

b) Gọi O là vị trí xây dựng khách sạn; H, I, K lần lượt là chân đường vuông góc kẻ từ O đến AB, BC, CA.

Vì vị trí xây dựng khách sạn cách đều cả ba con đường nên OH = OI = OK.

Mặt khác, SOAB=12⋅OH⋅AB; SOBC=12⋅OI⋅BC; SOCA=12⋅OK⋅CA.

Mà SABC=SOAB+SOBC+SOCA

Suy ra SABC=12⋅OH⋅AB+12⋅OI⋅BC+12⋅OK⋅CA

Do đó SABC=12⋅OH⋅AB+BC+CA

Nên OH=2SABCAB+BC+CA=2⋅5400003600=300(m).

Vậy khách sạn sẽ cách mỗi con đường một khoảng là 300 mét.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Luyện tập chung trang 78

Bài 29. Tứ giác nội tiếp

Bài 30. Đa giác đều

Luyện tập chung trang 90

Bài tập cuối chương IX

=============
THUỘC: Giải bài tập Toán 9 – SGK KẾT NỐI TRI THỨC

Bài liên quan:

  1. Giải SGK (KNTT) Toán 9 : Bài tập ôn tập cuối năm
  2. Giải SGK (KNTT) Toán 9: Gene trội trong các thế hệ lai
  3. Giải SGK (KNTT) Toán 9: Xác định tần số, tần số tương đối, vẽ các biểu đồ biểu diễn bảng tần số, tần số tương đối bằng Excel
  4. Giải SGK (KNTT) Toán 9: Vẽ hình đơn giản với phần mềm GeoGebra
  5. Giải SGK (KNTT) Toán 9: Giải phương trình, hệ phương trình và vẽ đồ thị hàm số với phần mềm GeoGebra
  6. Giải SGK (KNTT) Toán 9: Bài tập cuối chương 10
  7. Giải SGK (KNTT) Toán 9: Luyện tập chung trang 106
  8. Giải SGK (KNTT) Toán 9 Bài 32. Hình cầu
  9. Giải SGK (KNTT) Toán 9 Bài 31: Hình trụ và hình nón
  10. Giải SGK (KNTT) Toán 9: Bài tập cuối chương 9
  11. Giải SGK (KNTT) Toán 9: Luyện tập chung trang 90
  12. Giải SGK (KNTT) Toán 9 Bài 30: Đa giác đều
  13. Giải SGK (KNTT) Toán 9 Bài 29: Tứ giác nội tiếp
  14. Giải SGK (KNTT) Toán 9 Bài 28: Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác
  15. Giải SGK (KNTT) Toán 9 Bài 27: Góc nội tiếp

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SGK (KNTT) Toán 9 Kết nối tri thức – Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.