
Giải SGK Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit – SÁCH GIÁO KHOA CÁNH DIÊU 2024
================
Giải bài tập Toán lớp 11 Bài 3: Hàm số mũ. Hàm số lôgarit
Câu hỏi khởi động trang 39 Toán 11 Tập 2: Một doanh nghiệp gửi ngân hàng 1 tỉ đồng với kì hạn 1 năm, lãi suất 6,2
x
–1
0
1
2
3
y
?
?
?
?
?
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm trong bảng giá trị ở câu a.
Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với x ∈ ℝ và nối lại, ta được đồ thị hàm số y = 2x (Hình 1).

c) Cho biết tọa độ giao điểm của đồ thị hàm số y = 2x với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
d) Quan sát đồ thị hàm số y = 2x, nêu nhận xét về:
•
• Sự biến thiên của hàm số y = 2x và lập bảng biến thiên của hàm số đó.
Lời giải:
a) Xét hàm số y = 2x.
Thay x = –1 vào hàm số trên ta được
Tương tự, thay lần lượt các giá trị x = 0; x = 1; x = 2; x = 3 vào hàm số ta được bảng sau:
|
x |
–1 |
0 |
1 |
2 |
3 |
|
y |
1 |
2 |
4 |
8 |
b) Các điểm được biểu diễn trên mặt phẳng tọa độ Oxy như Hình 1.
Bằng cách làm tương tự, lấy nhiều điểm (x; 2x) với x ∈ ℝ và nối lại, ta được đồ thị hàm số y = 2x (Hình 1).

c) Giao điểm của đồ thị hàm số y = 2x với trục tung là B(0; 1) và đồ thị hàm số đó nằm ở phía trên trục hoành, đi lên kể từ trái sang phải.
d) Từ đồ thị hàm số, ta thấy:
•
• Đồ thị hàm số y = 2x đi lên kể từ trái sang phải nên hàm số y = 2x đồng biến trên ℝ.
Bảng biến thiên của hàm số y = 2x:

Hoạt động 3 trang 40 Toán 11 Tập 2: Cho hàm số mũ
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
|
x |
–3 |
–2 |
–1 |
0 |
1 |
|
y |
? |
? |
? |
? |
? |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.
Bằng cách làm tương tự, lấy nhiều điểm với x ∈ ℝ và nối lại, ta được đồ thị hàm số (Hình 2).

c) Cho biết tọa độ giao điểm của đồ thị hàm số với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
d) Quan sát đồ thị hàm số nêu nhận xét về:
•
• Sự biến thiên của hàm số và lập bảng biến thiên của hàm số đó.
Lời giải:
a) Xét hàm số
Thay x = –3 vào hàm số ta được
Tương tự, ta thay lần lượt các giá trị x = –2; x = –1; x = 0; x = 1 vào hàm số ta được bảng sau:
|
x |
–3 |
–2 |
–1 |
0 |
1 |
|
y |
8 |
4 |
2 |
1 |
b) Các điểm được biểu diễn trên mặt phẳng tọa độ Oxy như Hình 2.
Bằng cách làm tương tự, lấy nhiều điểm với x ∈ ℝ và nối lại, ta được đồ thị hàm số (Hình 2).

c) Tọa độ giao điểm của đồ thị hàm số với trục tung là Q(0; 1) và đồ thị hàm số nằm ở phía trên trục hoành, đi xuống kể từ trái sang phải.
d) Từ đồ thị hàm số, ta thấy:
•
• Đồ thị hàm số đi xuống kể từ trái sang phải nên hàm số nghịch biến trên ℝ.
Bảng biến thiên của hàm số

Luyện tập 2 trang 42 Toán 11 Tập 2: Lập bảng biến thiên và vẽ đồ thị hàm số
Lời giải:
Vì hàm số có cơ số nên ta có bảng biến thiên như sau

Đồ thị của hàm số là một đường cong liền nét đi qua các điểm như hình vẽ:

II. Hàm số Lôgarit
Hoạt động 4 trang 43 Toán 11 Tập 2: Tìm giá trị y tương ứng với giá trị x trong bảng sau:
|
x |
1 |
3 |
9 |
27 |
|
y = log3x |
? |
? |
? |
? |
Lời giải:
Thay x = 1 vào hàm số y = log3x ta được y = log31 = 0.
Tương tự, thay lần lượt các giá trị x = 1; x = 3; x = 9; x = 27 vào hàm số y = log3x ta được bảng sau:
|
x |
1 |
3 |
9 |
27 |
|
y = log3x |
0 |
1 |
2 |
3 |
Luyện tập 3 trang 43 Toán 11 Tập 2: Cho hai ví dụ về hàm số lôgarit.
Lời giải:
Hai ví về hàm số lôgarit: log3x và log7(x + 2).
Hoạt động 5 trang 43 Toán 11 Tập 2: Cho hàm số lôgarit y = log2x.
a) Tìm giá trị y tương ứng với giá trị x trong bảng sau:
|
x |
0,5 |
1 |
2 |
4 |
8 |
|
y |
? |
? |
? |
? |
? |
b) Trong mặt phẳng tọa độ Oxy, biểu diễn điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số y = log2x (Hình 6).

c)Cho biết tọa độ giao điểm đồ thị hàm số y = log2x với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.
d)Quan sát đồ thị hàm số y = log2x, nêu nhận xét về:
•
• Sự biến thiên của hàm số y = log2x và lập bảng biến thiên của hàm số đó.
Lời giải:
a) Xét hàm số y = log2x.
Thay x = 0,5 vào hàm số y = log2x ta được y = log20,5 = y = log22−1 = –1.
Tương tự, thay lần lượt các giá trị x = 1; x = 2; x = 4; x = 8 vào hàm số y = log2x, ta được bảng sau:
|
x |
0,5 |
1 |
2 |
4 |
8 |
|
y |
–1 |
0 |
1 |
2 |
3 |
b) Các điểm A(0,5; –1), B(1; 0), C(2; 1); D(4; 2) và E(8; 3) được biểu diễn trên mặt phẳng tọa độ Oxy như Hình 6.
Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số y = log2x (Hình 6).

c) Giao điểm đồ thị hàm số y = log2x với trục hoànhlà B(1; 0) và đồ thị hàm số y = log2xnằm ở phía biên phải trục tung, đi lên kể từ trái sang phải.
d) Từ đồ thị ta thấy:
•
• Đồ thị hàm số y = log2xđi lên kể từ trái sang phải (với x ∈ (0; +∞)) nên hàm số y = log2xđồng biến trên (0; +∞).
Bảng biến thiên của hàm số đó:

Hoạt động 6 trang 44 Toán 11 Tập 2: Cho hàm số lôgarit
a) Tìm giá trị y tương ứng với giá trị x trong bảng sau:
|
x |
0,5 |
1 |
2 |
4 |
8 |
|
y |
? |
? |
? |
? |
? |
b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn điểm (x; y) trong bảng giá trị ở câu a.
Bằng cách làm tương tự, lấy nhiều điểm với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số (Hình 7).

c)Cho biết tọa độ giao điểm đồ thị hàm số với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.
d)Quan sát đồ thị hàm số nêu nhận xét về:
•
• Sự biến thiên của hàm số và lập bảng biến thiên của hàm số đó.
Lời giải:
a) Xét hàm số
Thay x = 0,5 vào hàm số ta được
Thay lần lượt các giá trị x = 1; x = 2; x = 4; x = 8 vào hàm số ta được bảng sau:
|
x |
0,5 |
1 |
2 |
4 |
8 |
|
y |
1 |
0 |
–1 |
–2 |
–3 |
b) Các điểm M(0,5; 1), N(1; 0), P(2; –1), Q(4; –2) và R(8; –3) được biểu diễn trên mặt phẳng tọa độ Oxy như Hình 7.
Bằng cách làm tương tự, lấy nhiều điểm với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số (Hình 7).

c) Giao điểm đồ thị hàm số với trục hoành là N(1; 0) và đồ thị hàm số nằm ở phía bên phải trục tung, đi xuống kể từ trái sang phải.
d) Từ đồ thị hàm số, ta thấy:
•
• Đồ thị hàm số đi xuống kể từ trái sang phải nên hàm số nghịch biến trên (0; +∞).
Bảng biến thiên của hàm số đó:

Luyện tập 4 trang 46 Toán 11 Tập 2: Lập bảng biến thiên và vẽ đồ thị hàm số
Lời giải:
Vì hàm số có cơ số nên ta có bảng biến thiên như sau:

Đồ thị của hàm số là một đường cong liền nét đi qua các điểm như hình vẽ:

Bài tập
Bài 1 trang 47 Toán 11 Tập 2: Tìm tập xác định của các hàm số:
a) y = 12x;
b) y = log5(2x – 3);
c) .
Lời giải:
a) Hàm số y = 12x xác định với mọi x nên tập xác định D = ℝ.
b) Hàm số y = log5(2x – 3) xác định khi 2x – 3 > 0 hay
Vậy tập xác định của hàm số trên là .
c) Hàm số xác định khi –x2 + 4 > 0, hay x2 < 4 nên –2 < x < 2
Vậy tập xác định của hàm số trên là D = (–2; 2).
Bài 2 trang 47 Toán 11 Tập 2: Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
a) b)
c) y = logπx; d)
Lời giải:
a) Hàm số có tập xác định D = ℝ.
Do nên hàm số nghịch biến ℝ.
b) Hàm số có tập xác định D = ℝ.
Do nên hàm số nghịch biến trên ℝ.
c) Hàm số y = logπx có tập xác định là D = (0; +∞).
Do π > 1nên hàm số y = logπx đồng biến trên (0; +∞).
d) Hàm số có tập xác định là D = (0; +∞).
Do nên hàm số nghịch biến trên (0; +∞).
Bài 3 trang 47 Toán 11 Tập 2: Lập bảng biến thiên và vẽ đồ thị hàm số:
a) y = 4x;b) .
Lời giải:
a) Vì hàm số y = 4x có cơ số 4 > 1 nên ta có bảng biến thiên như sau:

Đồ thị hàm số y = 4x là đường thẳng đi qua các điểm như hình vẽ:

b) Vì hàm số có cơ số nên ta có bảng biến thiên như sau:

Đồ thị hàm số là đường thẳng đi qua các điểm như hình vẽ:

Bài 4 trang 47 Toán 11 Tập 2: Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: S = A.ert, trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lệ tăng dân số 0,93 THUỘC: Giải bài tập Toán 11 TẬP 2- CD

Để lại một bình luận