• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 7 - Kết nối / Giải bài tập Bài luyện tập chung trang 19 (Chương 6 Toán 7 Kết nối)

Giải bài tập Bài luyện tập chung trang 19 (Chương 6 Toán 7 Kết nối)

Ngày 27/02/2023 Thuộc chủ đề:Giải bài tập Toán 7 - Kết nối Tag với:GBT Chuong 6 Toan 7 - KN

Giải bài tập Bài luyện tập chung trang 19 (Chương 6 Toán 7 Kết nối)
===========

Giải bài 6.27 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Các giá trị của hai đại lượng x và y được cho bởi bảng sau đây:

x

0,5

1

1,5

2

2,5

y

2,5

5

7,5

10

12,5

Hỏi hai đại lượng x và y có quan hệ tỉ lệ thuận hay tỉ lệ nghịch không? Viết công thức liên hệ giữa x và y.

Phương pháp giải

* Kiểm tra tỉ số 2 giá trị tương ứng của chúng có luôn bằng nhau không.

+ Nếu bằng thì 2 đại lượng đó tỉ lệ thuận

+ Nếu không bằng thì 2 đại lượng đó không là hai đại lượng tỉ lệ thuận

* Kiểm tra tích 2 giá trị tương ứng của chúng có luôn bằng nhau không.

+ Nếu bằng thì 2 đại lượng đó tỉ lệ nghịch

+ Nếu không bằng thì 2 đại lượng đó không là hai đại lượng tỉ lệ nghịch

Lời giải chi tiết

Ta thấy: \(\dfrac{{0,5}}{{2,5}} = \dfrac{1}{5} = \dfrac{{1,5}}{{7,5}} = \dfrac{2}{{10}} = \dfrac{{2,5}}{{12,5}}\) nên x và y là 2 đại lượng tỉ lệ thuận.

Công thức liên hệ: \(x = \dfrac{1}{5}.y\) (hay y = 5.x)

 

Giải bài 6.28 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Cho ba đại lượng x,y,z. Tìm mối quan hệ giữa hai đại lượng x và z, biết rằng:

a) x và y tỉ lệ thuận, y và z tỉ lệ thuận       

b) x và y tỉ lệ thuận, y và z tỉ lệ nghịch

c) x và y tỉ lệ nghịch, y và z tỉ lệ nghịch

Phương pháp giải

+ Sử dụng định nghĩa 2 đại lượng tỉ lệ thuận và tỉ lệ nghịch:

Nếu y = a.x (a là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ a.

Nếu \(y = \dfrac{a}{x}\)(a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a

+ Biểu diễn đại lượng y theo z.

Nếu y = k. z ( k là hằng số) thì y và z là hai đại lượng tỉ lệ thuận.

Nếu \(y = \dfrac{k}{z}\) ( k là hằng số) thì y và z là hai đại lượng tỉ lệ nghịch.

Lời giải chi tiết

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = b.z

Do đó, \(x = \dfrac{y}{a} = \dfrac{{b.z}}{a} = \dfrac{b}{a}.z\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{y}{a} = \dfrac{{\dfrac{b}{z}}}{a} = \dfrac{b}{z}:a = \dfrac{b}{z}.\dfrac{1}{a} = \dfrac{{\dfrac{b}{a}}}{z}\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\) nên x = \(\dfrac{a}{y}\)

              y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{a}{y} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\)( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\) 

 

Giải bài 6.29 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Để thu được một loại đồng thau, người ta pha chế đồng và kẽm nguyên chất theo tỉ lệ 6:4. Tính khối lượng đồng và kẽm nguyên chất cần thiết để sản xuất 150 kg đồng thau.

Phương pháp giải

Gọi khối lượng đồng và kẽm để pha chế 150 kg đồng thau lần lượt là x, y (kg) (x,y > 0)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}}\)

Lời giải chi tiết

Gọi khối lượng đồng và kẽm để pha chế 150 kg đồng thau lần lượt là x, y (kg) (x,y > 0) nên x + y = 150

Vì đồng và kẽm nguyên chất theo tỉ lệ 6:4 nên \(\dfrac{x}{6} = \dfrac{y}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{x}{6} = \dfrac{y}{4} = \dfrac{{x + y}}{{6 + 4}} = \dfrac{{150}}{{10}} = 15\\ \Rightarrow x = 15.6 = 90\\y = 15.4 = 60\end{array}\)

Vậy khối lượng đồng và kẽm để pha chế 150 kg đồng thau lần lượt là 90 kg và 60 kg.

 

Giải bài 6.30 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Với thời gian để một thợ lành nghề làm được 12 sản phẩm thì người thợ học việc chỉ làm được 8 sản phẩm. Hỏi người thợ học việc phải mất bao nhiêu thời gian để hoàn thành khối lượng công việc mà người thợ lành nghề làm trong 48 giờ?

Phương pháp giải

Với cùng một công việc, thời gian và số sản phẩm làm được là hai đại lượng tỉ lệ nghịch

Lời giải chi tiết

Gọi thời gian người thợ học việc cần để hoàn thành khối lượng công việc mà người thợ lành nghề làm trong 48 giờ là x ( giờ) (x > 0)

Vì với cùng một công việc, thời gian và số sản phẩm làm được là hai đại lượng tỉ lệ nghịch.

Theo tính chất hai đại lượng tỉ lệ nghịch, ta có:

12.48 = 8. x \( \Rightarrow x = \dfrac{{12.48}}{8} = 72\)

Vậy thời gian người thợ học việc cần là 72 giờ.

 

Giải bài 6.31 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Học sinh khối lớp 7 đã quyên góp được một số sáchh nộp cho thư viện. Sĩ số của các lớp 7A, 7B, 7C, 7D tương ứng là 38;39;30 và 40 em. Biết rằng số sách quyên góp được tỉ lệ với số học sinh của lớp và lớp 7D góp được nhiều hơn lớp 7A là 4 quyển sách. Hỏi mỗi lớp quyên góp được bao nhiêu quyển sách?

Phương pháp giải

Gọi số quyển sách  4 lớp 7A, 7B, 7C, 7D quyên góp được lần lượt là x,y,z,t ( quyển) (x,y,z,t \( \in \)N*)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{g}{h} = \dfrac{{g – a}}{{h – b}}\)

Lời giải chi tiết

Gọi số quyển sách  4 lớp 7A, 7B, 7C, 7D quyên góp được lần lượt là x,y,z,t ( quyển) (x,y,z,t \( \in \)N*)

Vì lớp 7D góp được nhiều hơn lớp 7A là 4 quyển sách nên t – x = 4

Vì số sách quyên góp được tỉ lệ với số học sinh của lớp nên \(\dfrac{x}{{38}} = \dfrac{y}{{39}} = \dfrac{z}{{40}} = \dfrac{t}{{40}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{x}{{38}} = \dfrac{y}{{39}} = \dfrac{z}{{40}} = \dfrac{t}{{40}} = \dfrac{{t – x}}{{40 – 38}} = \dfrac{4}{2} = 2\\ \Rightarrow x = 2.38 = 76\\y = 2.39 = 78\\z = 2.40 = 80\\t = 2.40 = 80\end{array}\)

Vậy số quyển sách  4 lớp 7A, 7B, 7C, 7D quyên góp được lần lượt là 76, 78, 80, 80 quyển sách

 

Giải bài 6.32 trang 20 SGK Toán 7 Kết nối tri thức tập 2

Thư viện của một trường Trung học cơ sở mua ba đầu sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8, tổng cộng 121 cuốn. Giá của mỗi cuốn sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 lần lượt là  40 nghìn đồng, 45 nghìn đồng và 50 nghìn đồng. Hỏi thư viện đó mua bao nhiêu cuốn sách tham khảo môn Toán mỗi loại, biết rằng số tiền dùng để mua mỗi loại sách đó là như nhau?

Phương pháp giải

Gọi số cuốn sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 mà thư viện đó mua lần lượt là x, y, z (x, y, z \( \in \)\(\mathbb{N}\))

Số cuốn sách và giá tiền một cuốn sách tương ứng là 2 đại lượng tỉ lệ nghịch.

Áp dụng tính chất của dãy tỉ số bằng nhau:\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}}\)

Lời giải chi tiết

Gọi số cuốn sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 mà thư viện đó mua lần lượt là x, y, z (x, y, z \( \in \)\(\mathbb{N}\))

Vì tổng cộng là 121 cuốn nên ta có \(x + y + z = 121\)

Vì số tiền dùng để mua mỗi loại sách đó là như nhau nên số cuốn sách và giá tiền một cuốn sách tương ứng là 2 đại lượng tỉ lệ nghịch.

Theo tính chất hai đại lượng tỉ lệ nghịch, ta có:

40.x=45.y=50.z

\(\begin{array}{l} \Rightarrow \dfrac{x}{{\dfrac{1}{{40}}}} = \dfrac{y}{{\dfrac{1}{{45}}}} = \dfrac{z}{{\dfrac{1}{{50}}}}\\ = \dfrac{{x + y + z}}{{\dfrac{1}{{40}} + \dfrac{1}{{45}} + \dfrac{1}{{50}}}} = \dfrac{{121}}{{\dfrac{{121}}{{1800}}}} = 121.\dfrac{{1800}}{{121}} = 1800\\ \Rightarrow x = 1800.\dfrac{1}{{40}} = 45\\y = 1800.\dfrac{1}{{45}} = 40\\z = 1800.\dfrac{1}{{50}} = 36\end{array}\)

Vậy số sách tham khảo môn Toán lớp 6, lớp 7 và lớp 8 mà thư viện đó mua lần lượt là 45 quyển, 40 quyển và 36 quyển. 

 

Bài liên quan:

  1. Giải bài tập Bài CUỐI Chương 6 Toán 7 Kết nối
  2. Giải bài tập Bài 23 Đại lượng tỉ lệ nghịch (Chương 6 Toán 7 Kết nối)
  3. Giải bài tập Bài 22 Đại lượng tỉ lệ thuận (Chương 6 Toán 7 Kết nối)
  4. Giải bài tập Bài luyện tập chung trang 10 (Chương 6 Toán 7 Kết nối)
  5. Giải bài tập Bài 21. Tính chất của dãy số bằng nhau (Chương 6 Toán 7 Kết nối)
  6. Giải bài tập Bài 20. Tỉ lệ thức (Chương 6 Toán 7 Kết nối)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Toán 7 – Sách kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.