• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Toán lớp 10 / Ôn chương 4 Bất đẳng thức, bất phương trình – Đại số 10

Ôn chương 4 Bất đẳng thức, bất phương trình – Đại số 10

08/01/2020 by admin Để lại bình luận Thuộc chủ đề:Toán lớp 10 Tag với:Học chương 4 đại số 10

Bài 1

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

\({x^4} + {y^4} \ge {x^3}y + x{y^3}\)

Gợi ý:

\({x^4} + {y^4} \ge {x^3}y + x{y^3} \Leftrightarrow {x^4} + {y^4} – {x^3}y – x{y^3} \ge 0\)

\( \Leftrightarrow {x^3}(x – y) + {y^3}(y – x) \ge 0 \Leftrightarrow (x – y)({x^3} – {y^3}) \ge 0\)

\( \Leftrightarrow {(x – y)^2}({x^2} + {y^2} + xy) \ge 0 \Leftrightarrow {(x – y)^2}({(x + {y \over 2})^2} + {{3{y^2}} \over 4}) \ge 0\) (đúng)

Bài 2

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

\({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)

Bài giải

Từ \({1 \over a} + {1 \over b} \ge 2\sqrt {{1 \over {ab}}} \) và \(a + b \ge 2\sqrt {ab} \) suy ra

\((a + b)({1 \over a} + {1 \over b}) \ge 4\) hay \({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)


Bài 3

 trang 106 SBT SBT Đại số 10

Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng:

\({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)

Đáp án

Từ \(a + b \ge 2\sqrt {ab} \) và \(c + d \ge 2\sqrt {cd} \)suy ra

\(a + b + c + d \ge 2(\sqrt {ab}  + \sqrt {cd} )\)

\( =  > 2.2\sqrt {\sqrt {ab} .\sqrt {cd} } \)

=> \({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)

=> \(a + b + c + d \ge 2.2\sqrt {\sqrt {ab} .\sqrt {cd} } \)

=> \({{a + b + c + d} \over 4} \ge \root 4 \of {abcd} \)


Bài 4

Cho a, b, c là ba số thực thỏa mãn điều kiện \({a^3} > 36\) và abc = 1

Xét tam thức bậc hai \(f(x) = {x^2} – {\rm{a}}x – 3ac + {{{a^2}} \over 3}\)

a) Chứng minh rằng \(f(x) > 0,\forall x\);

b) Từ câu a) suy ra \({{{a^2}} \over 3} + {b^2} + {c^2} > ab + bc + ca.\)

Bài làm

a) f(x) có

\(\eqalign{
& \Delta = {a^2} – 4( – 3bc + {{{a^2}} \over 3}) = {{ – {a^2}} \over 3} + 12bc \cr
& = {{ – {a^2}} \over 3} + {{12abc} \over a} = {{ – {a^2}} \over 3} + {{12} \over a} \cr} \)

\( = {{36 – {a^3}} \over {3a}} < 0\) (do giả thiết \({a^3} > 36\))

=> \(f(x) > 0,\forall x\)

b) \({{{a^2}} \over 3} + {b^2} + {c^2} > ab + bc + ca\)

\( \Leftrightarrow {{{a^2}} \over 3} + {(b + c)^2} – 2bc > bc + a(b + c)\)

\( \Leftrightarrow {(b + c)^2} – a(b + c) – 3bc + {{{a^2}} \over 3} > 0\)

\( \Leftrightarrow f(b + c) > 0\) đúng vì \(f(x) > 0,\forall x.\)


Bài 5

Giải và biện luận bất phương trình sau theo tham số m.

\((m – 1).\sqrt x  \le 0\)

Hướng dẫn giải

Điều kiện của bất phương trình là \(x \ge 0\)

Nếu \(m \le 1\) \(m – 1 \le 0\) , bất phương trình đã cho nghiệm đúng với mọi \(x \ge 0\)

Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với

\(\sqrt x  \le 0 \Leftrightarrow x = 0\)

Trả lời: Nếu \(m \le 1\) thì tập nghiệm của bất phương trình là \({\rm{[}}0; + \infty )\)

           Nếu m > 1 thì tập nghiệm của bất phương trình là {0}


Bài 6

Tìm a và b để bất phương trình

\((x – 2a + b – 1)(x + a – 2b + 1) \le 0\)

Có tập nghiệm là đoạn [0;2].

Lời giải

Tập nghiệm của bất phương trình đã cho là đoạn \({\rm{[}}2a – b + 1; – a + 2b – 1]\) (nếu \(2a – b + 1 \le  – a + 2b – 1\)) hoặc là đoạn \({\rm{[}} – a + 2b – 1;2a – b + 1]\) (nếu \( – a + 2b – 1 \le 2a – b – 1\))

Do đó để tập nghiệm của bất phương trình đã cho là đoạn [0;2], điều kiện cần và đủ là:

\((1)\,\left\{ \matrix{
2a – b + 1 = 2 \hfill \cr
– a + 2b – 1 = 0 \hfill \cr} \right.\)

hoặc

\((2)\,\left\{ \matrix{
2a – b + 1 = 0 \hfill \cr
– a + 2b – 1 = 2. \hfill \cr} \right.\)

Giải (1) ta được a = b = 1. Giải hệ (2) ta được \(a = {1 \over 3},b = {5 \over 3}\)

Đáp số: a = b = 1 hoặc \(a = {1 \over 3},b = {5 \over 3}\)


Bài 7

Tìm a và b (b > -1) để hai bất phương trình sau tương đương

\((x – a + b)(x + 2a – b – 1) \le 0\) (1)

Và \(\left| {x + a – 2} \right| \le b + 1.\) (2)

Gợi ý làm bài

(1) \( \Leftrightarrow x \in {\rm{[}}\alpha ;\beta {\rm{]}}\), trong đó

\(\left\{ \matrix{
\alpha = a – b \hfill \cr
\beta = – 2a + b + 1 \hfill \cr} \right.\)

hoặc

\(\left\{ \matrix{
\alpha = – 2a + b + 1 \hfill \cr
\beta = a – b. \hfill \cr} \right.\)

(2) \( \Leftrightarrow  – (b + 1) \le x + a – 2 \le b + 1\)

\(\Leftrightarrow  – b – a + 1 \le x \le  – a + b + 3\)

\(\Leftrightarrow x \in {\rm{[}} – b – a + 1; – a + b + 3]\)

(1) và (2) tương đương khi và chỉ khi \({\rm{[}}\alpha ;\beta {\rm{]}} = {\rm{[}} – b – a + 1; – a + b + 3]\), tức là:

\(\left\{ \matrix{
\alpha = – b – a + 1 \hfill \cr
\beta = – a + b + 3 \hfill \cr} \right.\)

\( \Leftrightarrow (3)\left\{ \matrix{
a – b = – b – a + 1 \hfill \cr
– 2a + b + 1 = – a + b + 3 \hfill \cr} \right.\)

hoặc

\(\left\{ \matrix{
– 2a + b + 1 = – b – a + 1 \hfill \cr
a – b = – a + b + 3 \hfill \cr} \right.\)

Hệ phương trình (3) vô nghiệm. Hệ phương trình (4) có nghiệm duy nhất \(a = 3,b = {3 \over 2}\)

Đáp số: \(a = 3,b = {3 \over 2}\).


Bài 8

Tìm giá trị lớn nhất của hàm số 

\(y = 4{x^3} – {x^4}\) với \(0 \le x \le 4\)

Bài giải

\(y = 4{x^3} – {x^4} = {x^3}(4 – x)\)

=> \(3y = x.x.x(12 – 3x) \le {({{x + x} \over 2})^2}{({{x + 12 – 3x} \over 2})^2}\)

\( =  > 48 \le {{\rm{[}}2x(12 – 2x){\rm{]}}^2} \le {({{2x + 12 – 2x} \over 2})^4} = {6^4}\)

\( =  > y \le {{{6^4}} \over {48}} = 27,\forall x \in {\rm{[}}0;4]\)

\(y = 27 \Leftrightarrow \left\{ \matrix{
x = x \hfill \cr
x = 12 – 3x \hfill \cr
2x = 12 – x \hfill \cr
x \in {\rm{[}}0;4] \hfill \cr} \right. \Leftrightarrow x = 3.\)

Vậy giá trị lớn nhất của hàm số đã cho bằng 27 đạt được khi x = 3.


Bài 9

Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó

\(y = \sqrt {x – 1}  + \sqrt {5 – x} \)

Bài giải

Vế phải có nghĩa khi \(1 \le x \le 5\)

Ta có: \({y^2} = {(\sqrt {x – 1}  + \sqrt {5 – x} )^2} = 4 + 2\sqrt {(x – 1)(5 – x)} \)

=> \(\eqalign{
& \left\{ \matrix{
{y^2} \ge 4,\forall x \in {\rm{[}}1;5] \hfill \cr
{y^2} \le 4 + (x – 1) + (5 – x) = 8 \hfill \cr} \right. \cr
& = > \left\{ \matrix{
y \ge 2 \hfill \cr
y \le 2\sqrt 2 \hfill \cr} \right.\forall x \in {\rm{[}}1;5] \cr} \)

Hơn nữa \(y = 2 \Leftrightarrow (x – 1)(5 – x) = 0 \Leftrightarrow \left[ \matrix{x = 1 \hfill \cr x = 5 \hfill \cr} \right.$\)

\(y = 2\sqrt 2  \Leftrightarrow x – 1 = 5 – x \Leftrightarrow x = 3\)

Vậy giá trị lớn nhất của hàm số đã cho bằng \(2\sqrt 2 $\) khi x = 3, giá trị nhỏ nhất của hàm số đã cho bằng 2 khi x = 1 hoặc x = 5.

Bài liên quan:

  • Bài 5. Dấu của tam thức bậc hai – Chương 4 – Đại số 10
  • Bài 4. Bất phương trình bậc nhất hai ẩn – Chương 4 – Đại số 10
  • Bài 3. Dấu của nhị thức bậc nhất – Chương 4 – Đại số 10
  • Bài 2. Bất phương trình và hệ bất phương trình một ẩn – Chương 4 – Đại số 10
  • Bài 1. Bất đẳng thức – Chương 4 – Đại số 10

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2020) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.