• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 11 - Cánh diều / Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm – CD

Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm – CD

Ngày 09/01/2024 Thuộc chủ đề:Giải bài tập Toán 11 - Cánh diều Tag với:GBT Toan 11 Chuong 7 – CD

Giải SGK Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm – SÁCH GIÁO KHOA CÁNH DIÊU 2024

================

Giải bài tập Toán lớp 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

Câu hỏi khởi động trang 59 Toán 11 Tập 2: Tên lửa vũ trụ là phương tiện được chế tạo đặc biệt giúp con người thực hiện các sứ mệnh trong không gian như: tiếp cận đến các hành tinh ngoài Trái Đất, vận chuyển con người và thiết bị lên vũ trụ, … (Hình 1).

Câu hỏi khởi động trang 59 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Nếu quỹ đạo chuyển động của tên lửa được miêu tả bằng hàm số theo thời gian thì đại lượng nào biểu thị độ nhanh chậm của chuyển động tại một thời điểm

Lời giải:

Sau bài học này chúng ta sẽ trả lời được câu hỏi trên như sau:

Đại lượng biểu thị tốc độ nhanh chậm của chuyển động tại một thời điểm là v(x0), là đạo hàm của hàm số theo thời gian biểu thị quỹ đạo chuyển động của tên lửa.

I. Đạo hàm tại một điểm

Hoạt động 1 trang 60 Toán 11 Tập 2: Tính vận tốc tức thời của viên bi tại thời điểm x0 =1 (s) trong bài toán tìm vận tốc tức thời nêu ở trên

Lời giải:

Ta có vận tốc tức thời tại thời điểm x0 của viên bi là vx0=limx1→x0fx1−f x0x1−x0 với fx=12gx2.

Vận tốc tức thời của viên bi tại thời điểm x0 =1 (s) là:

vx0=v1=limx1→1fx1−f 1x1−1=limx1→112gx12−12g⋅12x1−1

=limx1→112gx12−1x1−1=limx1→112gx1−1x1+1x1−1

=limx1→112gx1+1=12g1+1=g≈9,8 (m/s).

Luyện tập 1 trang 61 Toán 11 Tập 2: Tính đạo hàm của hàm số fx=1x  tại x0 = 2 bằng định nghĩa

Lời giải:

⦁ Xét ∆x là số gia của biến số tại điểm x0 = 2.

Ta có: Δy=f2+Δx–f2 =12+Δx−12

              =22⋅2+Δx−2+Δx2⋅2+Δx=−Δx2⋅2+Δx

Suy ra ΔyΔx=−Δx22+ΔxΔx=−122+Δx

⦁ Ta thấy limΔx→0ΔyΔx=limΔx→0−122+Δx=−122+0=−14.

Vậy f‘2 = −14.

Luyện tập 2 trang 62 Toán 11 Tập 2: Tính đạo hàm của hàm số f(x) = x3 tại điểm x bất kì bằng định nghĩa.

Lời giải:

⦁ Xét ∆x là số gia của biến số tại điểm x.

Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x)3 – x3

              = x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 – x3

              = 3x2∆x + 3x(∆x)2 + (∆x)3

              = ∆x[3x2 + 3x∆x + (∆x)2]

Suy ra ΔyΔx=Δx3x2+3xΔx+Δx2Δx=3x2+3xΔx+Δx2.

⦁ Ta thấy limΔx→0ΔyΔx=limΔx→03x2+3x⋅Δx+Δx2=3x2+3Δx⋅0+02=3x2.

Vậy f’(x) = 3x2.

II. Ý nghĩa hình học của đạo hàm

Hoạt động 2 trang 62 Toán 11 Tập 2: Cho hàm số y = f(x) có đồ thị (C), một điểm M0 cố định thuộc (C) có hoành độ x0. Với mỗi điểm M thuộc (C) khác M0, kí hiệu xM là hoành độ của điểm M và kM là hệ số góc của cát tuyến M0M. Giả sử tồn tại giới hạn hữu hạnk0=limxM→x0kM .

Khi đó, ta coi đường thẳng M0T đi qua M0 và có hệ số góc k0 là vị trí giới hạn của cát tuyến M0M khi điểm M di chuyển dọc theo (C) dần tới M0.

Đường thẳng M0T được gọi là tiếp tuyến của (C) tại điểm M0, còn M0 được gọi là tiếp điểm (Hình 3).

Hoạt động 2 trang 62 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Xác định hệ số góc k0 của tiếp tuyến M0T theo x0.

b) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M0

Lời giải:

a)Từ M0(x0; y0) và M(xM; yM) ta có M0M→=xM−x0;yM−y0

Đường cát tuyến M0M→=xM−x0;yM−y0 nhận làm vectơ chỉ phương nên có

Hệ số góc là: kM=yM−y0xM−x0=fxM−fx0xM−x0

Khi đó: k0=limxM→x0kM=limxM→x0fxM−fx0xM−x0=f‘x0.

Vậy k0 = f’(x0).

b) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M0(x0; y0) có hệ số góc k0 = f’(x0)là:

y = k0(x – x0) + y0 hay y = f’(x0)(x – x0) + f(x0).

Luyện tập 3 trang 63 Toán 11 Tập 2: Viết phương trình tiếp tuyến của đồ thị hàm số y=1xtại điểm N(1;1)

Lời giải:

Tiếp tuyến của đồ thị tại điểm có hoành độ bằng 1 có hệ số góc là:

    f‘1=limx→1fx−f1x−1=limx→11x−11x−1=limx→11x−1x−1

        =limx→11−xxx−1=limx→1−1x=−11=−1.

Phương trình tiếp tuyến của đồ thị tại điểm N(1; 1) là:

y = –1(x – 1) + 1 hay y = –x + 2

Bài tập

Bài 1 trang 63 Toán 11 Tập 2 :Tính đạo hàm của hàm số f(x) = 3x3 – 1 tại điểm x0 = 1 bằng định nghĩa:

Lời giải:

Xét ∆x là số gia của biến số tại điểm x0 = 1.

Ta có ∆y = f(1 + ∆x) – f(1) = 3(1 + ∆x)3 – 1 – (3.13 – 1)

              = 3 + 9∆x + 9.(∆x)2 + 3(∆x)3 – 1 – 2

              = 9∆x + 9.(∆x)2 + 3(∆x)3

              = ∆x[9 + 9∆x + 3(∆x)2].

Suy ra: ΔyΔx=Δx9+9Δx+3Δx2Δx=9+9Δx+3Δx2.

⦁ Ta thấy: limΔx→0ΔyΔx=limΔx→09+9Δx+3Δx2=9+9⋅0+3⋅02=9.

Bài 2 trang 63 Toán 11 Tập 2 :Chứng minh rằng hàm số f(x) = |x| không có đạo hàm tại điểm x0 = 0, nhưng có đạo hàm tại mọi điểm x ≠ 0

Lời giải:

Xét ∆x là số gia của biến số tại điểm x0 = 0.

Ta có ∆y = f(0 + ∆x) – f(0) = |∆x| – |0| = |∆x|.

Suy ra ΔyΔx=ΔxΔx.

Ta thấy limΔx→0+ΔyΔx=limΔx→0+ΔxΔx=limΔx→0+ΔxΔx=limΔx→0+1=1

            limΔx→0−ΔyΔx=limΔx→0−ΔxΔx=limΔx→0−−ΔxΔx=limΔx→0−−1=−1

Do đó limΔx→0+ΔyΔx≠limΔx→0−ΔyΔx nên không tồn tại limΔx→0ΔyΔx

Vậy hàm số f(x) = |x| không có đạo hàm tại điểm x0 = 0.

Ta có hàm số fx=   x   khi   x>0   0   khi   x=0−x   khi   x<0

⦁ Với x > 0 ta có hàm số f(x) = x.

Xét ∆x là số gia của biến số tại điểm x > 0.

Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x) – x = ∆x.

Suy ra ΔyΔx=ΔxΔx=1

Ta thấy limΔx→0ΔyΔx=limΔx→01=1

Do đó với x > 0 thì hàm số có đạo hàm f’(x) = 1.

⦁ Với x < 0 ta có hàm số f(x) = –x.

Xét ∆x là số gia của biến số tại điểm x < 0.

Ta có ∆y = f(x + ∆x) – f(x) = – (x + ∆x) + x = –∆x.

Suy ra ΔyΔx=–ΔxΔx=−1

Ta thấy limΔx→0ΔyΔx=limΔx→0−1=−1

Do đó với x < 0 thì hàm số có đạo hàm f’(x) = –1.

Vậy hàm số f(x) = |x| không có đạo hàm tại x0 = 0, nhưng có đạo hàm tại mọi điểm x ≠ 0.

Bài 3 trang 63 Toán 11 Tập 2 :Cho hàm y = –2x2 + x có đồ thị (C).

a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2.

b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; – 6)

Lời giải:

a) Tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 có hệ số góc là:

f‘2=limx→2fx−f2x−2=limx→2−2x2+x−−2⋅22+2x−2

=limx→2−2x2+x+6x−2=limx→2−x−22x+3x−2

=limx→2−2x+3=−2⋅2+3=−7.

Vậy hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 là f’(x) = –7.

b) Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; – 6) là:

y = –7(x – 2) – 6 hay y = –7x + 8.

Bài 4 trang 63 Toán 11 Tập 2 :Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là C(Q) = Q2 + 80Q + 3 500.

a) Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C’(Q). Tìm hàm chi phí biên.

b) Tìm C’(90) và giải thích ý nghĩa kết quả tìm được

Lời giải:

a) Xét ∆Q là số gia của biến số tại điểm Q.

Ta có ∆C = C(Q + ∆Q) – C(Q)

              = (Q + ∆Q)2 + 80(Q + ∆Q) + 3 500 – Q2 – 80Q – 3 500

              = (∆Q)2 + 2Q. ∆Q + 80∆Q.

               = ∆Q(∆Q + 2Q + 80).

Suy ra ΔCΔQ=ΔQΔQ+2Q+80ΔQ=ΔQ+2Q+80

Ta thấy limΔQ→0ΔCΔQ=limΔQ→0ΔQ+2Q+80=2Q+80

Vậy hàm chi phí biên là: C’(Q) = 2Q + 80 (USD).

b) Ta có C’(90) = 2 . 90 + 80 = 260 (USD).

Ý nghĩa: Để sản xuất thêm 1 sản phẩm từ 90 lên 91 sản phẩm cần chi phí biên (chi phí gia tăng) là 260 (USD)

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

=============
THUỘC: Giải bài tập Toán 11 TẬP 2- CD

Bài liên quan:

  1. Giải SGK Toán 11 (Cánh diều): Bài tập cuối chương 7 – CD
  2. Giải SGK Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai – CD
  3. Giải SGK Toán 11 Bài 2 (Cánh diều): Các quy tắc tính đạo hàm – CD

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Toán 11 – SGK Cánh diều

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.