• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Kết nối / Giải Sách bài tập Toán 11 (KNTT): Bài tập cuối chương 2

Giải Sách bài tập Toán 11 (KNTT): Bài tập cuối chương 2

Ngày 02/09/2023 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Kết nối Tag với:GIAI SBT CHUONG 2 TOAN 11 KN

GIẢI CHI TIẾT Sách bài tập Toán 11 (KNTT): Bài tập cuối chương 2 – Sách KÊT NỐI TRI THỨC

================

Giải SBT Toán lớp 11 Bài tập cuối chương 2

A. TRẮC NGHIỆM

Bài 2.31 trang 40 SBT Toán 11 Tập 1:Cho dãy số (un) xác định bởi: u1= 1, un + 1= un+ n. Số hạng u4là

A. 5.

B. 6.

C. 7.

D. 10.

Lời giải:

Đáp án đúng là: C

Ta có u1= 1;

u2= u1+ 1 = 1 + 1 = 2;

u3= u2+ 2 = 2 + 2 = 4;

u4= u3+ 3 = 4 + 3 = 7.

Bài 2.32 trang 40 SBT Toán 11 Tập 1:Hãy chọn dãy số bị chặn trong các dãy số (un) sau:

A. un= 1 – n2.

B. un= 2n.

C. un= n sin n.

D. un=2−nn+1.

Lời giải:

Đáp án đúng là: D

Xét từng đáp án, ta thấy dãy số ở đáp án D là dãy số bị chặn. Thật vậy:

Ta có un=2−nn+1=−n+1+3n+1=−1+3n+1.

Vì n > 0 nên 3n+1>0. Suy ra −1+3n+1>−1.

Vì n ≥ 1 nên n + 1 ≥ 2 ⇒3n+1≤32⇒−1+3n+1≤12

Vậy −1<un≤12nên dãy số này bị chặn.

Bài 2.33 trang 41 SBT Toán 11 Tập 1:Hãy chọn dãy số tăng trong các dãy số (un) sau:

A. un= – 2n + 1.

B. un= n2– n + 1.

C.un= (– 1)n2n.

D. un= 1 + sin n.

Lời giải:

Đáp án đúng là: B

Xét từng đáp án, ta thấy dãy số ở đáp án B là dãy số tăng. Thật vậy:

Ta có un + 1– un= [(n + 1)2– (n + 1) + 1] – (n2– n + 1)

= n2+ 2n + 1 – n – 1 + 1 – n2+ n – 1 = 2n > 0 với mọi n ≥ 1.

Tức là un + 1> unvới mọi n ≥ 1. Vậy đây là dãy số tăng.

Bài 2.34 trang 41 SBT Toán 11 Tập 1:Cho dãy số un=2 020sinnπ2+2 021cosnπ3. Mệnh nào dưới đây là đúng?

A. un + 6= un.

B. un + 9= un.

C. un + 4= un.

D. un + 12= un.

Lời giải:

Đáp án đúng là: D

Ta có un+12=2 020sinn+12π2+2 021cosn+12π3

=2 020sinnπ2+6π+2 021cosnπ3+4π

=2 020sinnπ2+2 021cosnπ3=unvới mọi n.

Vậy un + 12= un.

Bài 2.35 trang 41 SBT Toán 11 Tập 1:Chọn cấp số cộng trong các dãy số (un) sau:

A. un= 3n+ 2.

B. un= 3n+ 1.

C. un= 3n.

D. u1= 1, un + 1= un+ n.

Lời giải:

Đáp án đúng là: C

Ta có dãy số (un) với un= 3n là cấp số cộng.

Thật vậy, un + 1– un= 3(n + 1) – 3n = 3 không đổi với mọi n.

Vậy dãy số này là cấp số cộng với công sai d = 3.

Bài 2.36 trang 41 SBT Toán 11 Tập 1:Cho cấp số cộng với u1= −2, u9= 22.Tổng của 50 số hạng đầu của cấp số cộng này là

A. 3 570.

B. 3 575.

C. 3 576.

D. 3 580.

Lời giải:

Đáp án đúng là: B

Ta có u9= u1+ 8d = – 2 + 8d = 22. Suy ra d = 3.

Vậy tổng 50 số hạng đầu của cấp số cộng này là

 Cho cấp số cộng với u1 = −2 u9 = 22 Tổng của 50 số hạng đầu của cấp số cộng này là

Bài 2.36 trang 41 SBT Toán 11 Tập 1:Cho cấp số cộng với u1= −2, u9= 22.Tổng của 50 số hạng đầu của cấp số cộng này là

A. 3 570.

B. 3 575.

C. 3 576.

D. 3 580.

Lời giải:

Đáp án đúng là: B

Ta có u9= u1+ 8d = – 2 + 8d = 22. Suy ra d = 3.

Vậy tổng 50 số hạng đầu của cấp số cộng này là

 Cho cấp số cộng với u1 = −2 u9 = 22 Tổng của 50 số hạng đầu của cấp số cộng này là

Bài 2.37 trang 41 SBT Toán 11 Tập 1:Chọn cấp số nhân trong các dãy số (un) sau:

A. un= 2n.

B.un=2n.

C. un= 2n.

D. u1= 1, un + 1= nun.

Lời giải:

Đáp án đúng là: C

Ta có dãy số (un) với un= 2nlà cấp số nhân.

Thật vậy,un+1un=2n+12n=2không đổi với mọi n.

Vậy dãy số này là cấp số nhân với công bội q = 2.

Bài 2.38 trang 41 SBT Toán 11 Tập 1:Tổng 1+12+122+…+12nbằng

A. 2+12n

B. 2−12n−1.

C. 2−12n+1.

D. 2−12n.

Lời giải:

Đáp án đúng là: D

Ta có 1+12+122+…+12n. Nhận thấy các số hạng trong tổng này lập thành một cấp số nhân gồm n + 1 số hạng với số hạng đầu u1= 1 và công bội q=12.

Do đó 1+12+122+…+12n=u1.1−qn+11−q=1.1−12n+11−12=2−12n.

Bài 2.39 trang 41 SBT Toán 11 Tập 1:Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

A. 1.

B. 2.

C. 3.

D. 4.

Lời giải:

Đáp án đúng là: D

Giả sử 5 số hạng của cấp số nhân đó là u1; u2; u3; u4; u5và công bội của cấp số nhân là q.

+ Nếu q = 0 thì tích các số hạng bằng 0 không thỏa mãn bài toán nên q ≠ 0.

+ Nếu q = 1 thì u1= u2= u3= u4= u5, do đó u1+ u2+ u3+ u4+ u5= 5u1= 31.

Suy ra u1= u2= u3= u4= u5= 315. Khi đó u1. u2. u3. u4. u5= 3155≠1 024. Vô lí.

Vậy q ≠ 1.

+ Với q ≠ {0; 1}. Khi đó u2= u1q; u3= u1q2; u4= u1q3; u5= u1q4.

Ta có u1. u2. u3. u4. u5= u15.q1+2+3+4=u15q10=u1q25= 1 024 = 45. Suy ra u1q2= 4.

Suy ra u1=4q2.

Lại có u1+ u2+ u3+ u4+ u5= S5= u11−q51−q=4q21−q51−q=31.

Suy ra 4(1 – q5) = 31q2(1 – q)

⇔ 4(1 – q)(1 + q + q2+ q3+ q4) – 31q2(1 – q) = 0

⇔ (1 – q) (4 + 4q + 4q2+ 4q3+ 4q4– 31q2) = 0

⇔ (1 – q)(4q4+ 4q3– 27q2+ 4q + 4) = 0

 Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

Vì q ≠ 1 nên ta loại trường hợp q = 1.

Giải phương trình (*): Chia cả hai vế của (*) cho q2(do q ≠ 0) ta được

4q2+4q−27+4q+4q2=0

⇔4q2+8+4q2+4q+4q−35=0

⇔2q+2q2+22q+2q−35=0(**)

Đặt 2q+2q=t, khi đó (**) ⇔ t2+ 2t – 35 = 0 ⇔ t = – 7 hoặc t = 5.

+ Với t = – 7, ta có Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

+ Với t = 5, ta có Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

Thử lại ta thấy cả 4 giá trị của q đều thỏa mãn (*).

Vậy có 4 cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024.

Bài 2.40 trang 41 SBT Toán 11 Tập 1:Ông Trung có 100 triệu đồng gửi tiết kiệm vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8

A. 126 532 000 đồng.

B. 158 687 000 đồng.

C. 125 971 000 đồng.

D. 112 486 000 đồng.

Lời giải:

Đáp án đúng là: B

Ta có 100 triệu đồng = 100 000 000 đồng.

3 năm tương ứng với 6 kì lãi.

Vậy sau ba năm, số tiền trong tài khoản tiết kiệm của ông Trung là

S = 100 000 000 . (1 + 8

Xét các đáp án ta thấy 158 687 432 đồng gần nhất với 158 687 000 đồng.

Bài 2.41 trang 41 SBT Toán 11 Tập 1:Một du khách vào trường đua ngựa xem đua ngựa và đặt cược chọn con thắng cuộc. Nếu chọn đúng con thắng cuộc thì sẽ nhận được số tiền gấp đôi số tiền đặt cược, còn nếu chọn sai thì sẽ mất số tiền đặt cược. Người du khách đó lần đầu tiên đặt 20 000 đồng, mỗi lần sau tiền đặt gấp đôi tiền đặt lần trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khách đó thắng hay thua bao nhiêu?

A. Thắng 20 000 đồng.

B. Hoà vốn.

C. Thua 20 000 đồng.

D. Thua 40 000 đồng.

Lời giải:

Đáp án đúng là: A

Du khách đó lần đầu tiên đặt 20 000 đồng, mỗi lần sau tiền đặt gấp đôi tiền đặt lần trước.

Khi đó, số tiền đặt cược của du khách ở mỗi lần khác nhau lập thành một cấp số nhân với số hạng đầu là u1= 20 000 và công bội q = 2.

Người đó thua 9 lần liên tiếp nên tổng số tiền người đó đã bỏ ra và mất trong 9 lần đầu là:

S9=u11−q91−q=20 000.1−291−2=10 220 000(đồng).

Số tiền người đó bỏ ra ở lần thứ 10 là:

u10= u1. q10 – 1= 20 000 . 210 – 1= 10 240 000 (đồng).

Vì người du khách đó thắng ở lần thứ 10. Người đó nhận bỏ ra và nhận lại gấp đôi, nghĩa là người đó lãi được:10 240 000 (đồng).

Vậy thì sau 10 lần chơi, người đó đã thắng 20 000 đồng.

Bài 2.42 trang 42 SBT Toán 11 Tập 1:Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210?

A. 40.

B. 30.

C. 20.

D. 10.

Lời giải:

Đáp án đúng là: D

Gọi số hạng thứ 2, thứ 9 và thứ 44 của cấp số cộng này là u2, u9, u44. Giả sử cấp số cộng có số hạng đầu là u1và công sai là d. Khi đó ta có:

u2= u1+ d;

u9= u1+ 8d = (u1+ d) + 7d = u2+ 7d;

u44= u1+ 43d = (u1+ d) + 42d = u2+ 42d.

Vì 3 số này là các số hạng liên tiếp của một cấp số nhân nên ta có:

u2u44=u92hay u2(u2+ 42d) = (u2+ 7d)2.

Và tổng của 3 số đó là 217 nênu2+ u9+ u44= u2+ u2+ 7d + u2+ 42d = 3u2+ 49d = 217.

Vậy ta có hệBa số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân

Do đó u1= u2– d = 7 – 4 = 3.

Gọi n số hạng đầu của cấp số cộng có tổng là 210.

Khi đóBa số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhânhayBa số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân⇔ 210 = n(2n + 1)

⇔ 2n2+ n – 210 = 0Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân

Vì n nguyên dương nên n = 10. Vậy phải lấy 10 số hạng đầu của cấp số cộng này để tổng của chúng bằng 210.

B. TỰ LUẬN

Bài 2.43 trang 42 SBT Toán 11 Tập 1:Trong các dãy số (un) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân? Nếu dãy số là cấp số cộng hoặc cấp số nhân, hãy xác định công sai hoặc công bội của nó.

a) u1= 2, un + 1= un+ n;

b) un= 6n + 3;

c) u1= 1, un + 1= n ∙ un;

d) un= 3 . 5n.

Lời giải:

a) Từ hệ thức truy hồi ta có u1= 2; u2= u1+ 1 = 2 + 1 = 3; u3= u2+ 2 = 3 + 2 = 5.

Ta có 3 – 2 = 1; 5 – 3 = 2 nên u2– u1≠ u3– u2và 32≠53nên u2u1≠u3u2.

Do vậy, dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

b) Từ un= 6n + 3, suy ra un + 1= 6(n + 1) + 3 = 6n + 9.

Ta có un + 1= (6n + 9) – (6n + 3) = 6 không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số cộng với công sai d = 6.

c) Từ hệ thức truy hồi ta có u1= 1; u2= 1; u3= 2 . u2= 2.

Từ đó suy ra u2– u1≠ u3– u2và u2u1≠u3u2.

Vậy dãy số đã cho không là cấp số cộng và cũng không là cấp số nhân.

d) Từ un= 3 . 5nsuy ra un + 1= 3 . 5n + 1= 3 . 5 . 5n.

Ta có un+1un=3.5.5n3.5n=5không đổi với mọi n ≥ 1.

Vậy dãy số đã cho là cấp số nhân với công bội q = 5.

Bài 2.44 trang 42 SBT Toán 11 Tập 1:Chứng minh rằng:

a) Nếu a1, a2, a3, … và b1, b2, b3, … là hai cấp số cộng thì a1+ b1, a2+ b2, a3+ b3, … cũng là cấp số cộng.

b) Nếu a1, a2, a3, … và b1, b2, b3, … là hai cấp số nhân thì a1b1, a2b2, a3b3, … cũng là cấp số nhân.

Lời giải:

a) Theo giả thiết, ta giả sử dãy số (an) là cấp số cộng với công sai d1và dãy số (bn) là cấp số cộng với công sai d2nên ta có:

an + 1= an+ d1và bn + 1= bn+ d2với mọi n ≥ 1.

Khi đó an + 1+ bn + 1= (an+ d1) + (bn+ d2) = (an+ bn) + d1+ d2với mọi n ≥ 1.

Vậy dãy số (an+ bn) là cấp số cộng với công sai d1+ d2.

b) Theo giả thiết, ta giả sử dãy số (an) là cấp số nhân với công bội q1và dãy số (bn) là cấp số nhân với công bội q2nên ta có:

qn + 1= anq1và bn + 1= bnq2với mọi n ≥ 1.

Khi đó an + 1bn + 1= (anq1) . (bnq2) = (anbn)q1q2với mọi n ≥ 1.

Vậy dãy số (anbn) là cấp số nhân với công bội q1q2.

Bài 2.45 trang 42 SBT Toán 11 Tập 1:Một con chó con nặng 0,4 kg khi mới sinh và sau mỗi tuần tuổi khối lượng của nó tăng thêm 24

a) Viết lần lượt các công thức tính u2, u3. Từ đó dự đoán công thức của un.

b) Con chó nặng bao nhiêu kilôgam khi được sáu tuần tuổi?

Lời giải:

a) Giả sử un(kg) là khối lượng của con chó vào cuối tuần tuổi thứ n.

Ta có u1= 0,4; u2= u1+ u124

u3= u2+ u224

Cứ tiếp tục làm tương tự, ta dự đoán được công thức un= u1(1 + 0,24)n – 1với mọi n ≥ 1.

b) Sau sáu tuần tuổi thì con chó nặng là

u6= u1(1 + 0,24)6 – 1= 0,4 . (1,24)5≈ 1,173 (kg).

Bài 2.46 trang 42 SBT Toán 11 Tập 1:Bác Hưng quyết định tham gia một chương trình bơi lội để duy trì sức khoẻ. Bác bắt đầu bằng cách bơi 10 phút vào ngày đầu tiên, sau đó thêm 2 phút mỗi ngày sau đó.

a) Tìm công thức truy hồi cho số phút Tnmà bác ấy bơi vào ngày thứ n của chương trình.

b) Tìm sáu số hạng đầu của dãy số Tn.

c) Tìm công thức tổng quát của dãy số (Tn).

d) Bác Hưng đạt được mục tiêu bơi ít nhất 60 phút mỗi ngày vào ngày thứ bao nhiêu của chương trình?

e) Tính tổng thời gian bác Hưng bơi sau 30 ngày đầu của chương trình.

Lời giải:

Gọi Tnlà số phút mà bác Hưng bơi vào ngày thứ n của chương trình.

a) Do bác bắt đầu bằng cách bơi 10 phút vào ngày đầu tiên, sau đó thêm 2 phút mỗi ngày sau đó nên ta có hệ thức truy hồi sau T1= 10, Tn + 1= Tn+ 2 ∀ n ≥ 1.

b) Sáu số hạng đầu của dãy số là

T1= 10;

T2= T1+ 2 = 10 + 2 = 12;

T3= T2+ 2 = 12 + 2 = 14:

T4= T3+ 2 = 14 + 2 = 16;

T5= T4+ 2 = 16 + 2 = 18;

T6= T5+ 2 = 18 + 2 = 20.

c) Từ công thức truy hồi Tn + 1= Tn+ 2 suy ra Tn + 1– Tn= 2 không đổi ∀ n ≥ 1.

Do đó, dãy số (Tn) là cấp số cộng có số hạng đầu T1= 10 và công sai d = 2.

Suy ra, công thức tổng quát của dãy số là

Tn= T1+ (n − 1)d = 10 + (n – 1).2 = 8 + 2n ∀ n ≥ 1.

d) Ta có Tn≥ 60 ⇔ 8 + 2n ≥ 60 ⇔ n ≥ 26.

Vậy bác Hưng đạt được mục tiêu bơi ít nhất 60 phút mỗi ngày vào ngày thứ 26 của chương trình.

e) Tổng thời gian bác Hưng bơi trong 30 ngày đầu của chương trình là

 Bác Hưng quyết định tham gia một chương trình bơi lội để duy trì sức khoẻ Bác bắt đầu

Bài 2.47 trang 43 SBT Toán 11 Tập 1:Dãy các số chính phương sau đây không phải là cấp số cộng

1, 4, 9, 16, 25, 36, 49, 64, 81, …

Tuy nhiên, chúng ta có thể lập một cấp số cộng liên quan bằng cách tìm hiệu của các số hạng liên tiếp của dãy số này.

a) Viết tám số hạng đầu của cấp số cộng liên quan được mô tả ở trên. Tìm công thức của số hạng thứ n của cấp số cộng này.

b) Mô tả bằng cách nào để chúng ta có thể lập được một cấp số cộng từ dãy các số lập phương sau đây:

1, 8, 27, 64, 125, 216, 343, 512, 729, …

c) Viết bảy số hạng đầu của cấp số cộng ở trong phần b) và tìm số hạng thứ n của nó.

Lời giải:

a) Công thức số hạng thứ n của dãy các số chính phương đã cho là n2∀ n ≥ 1.

Tám số hạng đầu của cấp số cộng (un) được mô tả là

u1= 4 – 1 = 3; u2= 9 – 4 = 5; u3= 16 – 9 = 7; u4= 25 – 16 = 9;

u5= 36 – 25 = 11; u6= 49 – 36 = 13; u7= 64 – 49 = 15; u8= 81 – 64 = 17.

Theo giả thiết chúng ta xét hiệu của hai số hạng liên tiếp, do đó số hạng thứ n của cấp số cộng này là hiệu của số hạng thứ n + 1 và số hạng thứ n của dãy các số chính phương nên

un= (n + 1)2– n2= 2n + 1 ∀ n ≥ 1.

Ta chứng minh được dãy số (un) là cấp số cộng với công sai d = 2.

b) Xét dãy các số lập phương, với ba số hạng liên tiếp ta lấy số đầu cộng với số thứ ba trừ đi 2 lần số thứ hai ta thu được một cấp số cộng.

c) Bảy số hạng đầu của cấp số cộng ở trong câu b là 12; 18; 24; 30; 36, 42, 48,

u1= 1 + 27 – 2 . 8 = 12;

u2= 8 + 64 – 2 . 27 = 18;

u3= 27 + 125 – 2 . 64 = 24;

u4= 64 + 216 – 2 . 125 = 30;

u5= 125 + 343 – 2 . 216 = 36;

u6= 216 + 512 – 2 . 343 = 42;

u7= 343 + 729 – 2 . 512 = 48.

Công thức số hạng thứ n của cấp số cộng này là

un= n3+ (n + 2)3– 2(n + 1)3= 6n + 6 ∀ n ≥ 1.

Bài 2.48 trang 43 SBT Toán 11 Tập 1:Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Lời giải:

Gọi x, y lần lượt là số thứ nhất và số thứ ba trong ba số đó.

Vì ba số theo thứ tự đó lập thành một cấp số cộng nên số thứ hai là x+y2

Khi đó, ba số cần tìm có dạng: x, x+y2, y.

Vì ba số này lập thành một cấp số nhân nên ta có

xy=x+y22⇔ 4xy = x2+ 2xy + y2⇔ x2– 2xy + y2= 0 ⇔ (x − y)2= 0, tức là x = y.

Suy ra x+y2=x+x2=2x2=x.

Vậy ba số đó bằng nhau.

Bài 2.49 trang 43 SBT Toán 11 Tập 1:Anh Nam là một cầu thủ bóng đá chuyên nghiệp. Anh vừa kí hợp đồng 5 năm với một câu lạc bộ với mức lương năm khởi điểm là 300 triệu đồng. Chủ tịch câu lạc bộ đưa ra cho anh Nam ba phương án về lương như sau:

-Phương án 1:Mỗi năm ngoài mức lương cố định như trên, sẽ được thưởng thêm 50 triệu đồng.

-Phương án 2:Mỗi năm lương sẽ tăng thêm 10

-Phương án 3:Mỗi năm lương sẽ tăng thêm 30 triệu so với lương năm trước đó, bắt đầu kể từ năm thứ hai.

Em hãy tính giúp anh Nam xem với phương án lương nào thì tổng lương sau 5 năm của anh Nam là lớn nhất?

Lời giải:

Ta tính tổng tiền lương của anh Nam theo từng phương án:

-Phương án 1:Mỗi năm ngoài mức lương cố định như trên, sẽ được thưởng thêm 50 triệu đồng thì sau 5 năm tổng số tiền lương của anh Nam là

5 . 300 + 5 . 50 = 1 750 (triệu đồng).

-Phương án 2:Mỗi năm lương sẽ tăng thêm 10

300 + 300 . (1 + 10

= 1 831,53 (triệu đồng).

-Phương án 3:Mỗi năm lương sẽ tăng thêm 30 triệu so với lương năm trước đó, bắt đầu kể từ năm thứ hai thì sau 5 năm tổng số tiền lương của anh Nam là

300 + 330 + 360 + 390 + 420 = 1 800 (triệu đồng).

Vậy anh Nam nên sử dụngphương án 2để nhận được tổng lương sau 5 năm là cao nhất.

Bài 2.50 trang 43 SBT Toán 11 Tập 1:Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

u1= a, un + 1= qun+ d.

Nếu q = 1 ta có cấp số cộng với công sai d, còn nếu d = 0 ta có cấp số nhân với công bội q.

a) Giả sử q ≠ 1. Dự đoán công thức số hạng tổng quát un.

b) Thiết lập công thức tính tổng Sncủa n số hạng đầu của cấp số nhân cộng (un).

Lời giải:

a) Ta viết lần lượt các số hạng của dãy:

u1= a;

u2= qu1+ d;

u3= qu2+ d = q(qu1+ d) + d = q2u1+ qd + d = q2u1+ d(q + 1);

u4= qu3+ d = q(q2u1+ qd + d) + d = q3u1+ q2d + qd + d

= q3u1+ d(q2+ q + 1) = q3u1+ d 1−q31−q (với q ≠ 1).

Làm tương tự ta được công thức số hạng tổng quát un:

un= qn – 1u1+ d(qn – 2+ qn – 3+ … + 1) = qn – 1u1+ d 1−qn−11−q.

b) Ta viết tổng n số hạng đầu như sau

Sn= u1+ u2+ … + un

= u­1+ (qu1+ d) + (qu2+ d) + … + (qun – 1+ d)

= u1+ q(u1+ u2+ … + un – 1) + (n – 1)d

= u1+ qSn – 1+ (n – 1)d

= qSn – 1+ a + (n – 1)d (vì u1= a).

Như vậy, ta được (Sn) cũng là một cấp số nhân cộng với S1= u1= a.

Áp dụng công thức số hạng tổng quát vừa tìm được ở câu a để tính Snta có

 Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Vậy Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

=============
THUỘC: GIẢI SÁCH BÀI TẬP MÔN TOÁN LỚP 11 – KÊT NỐI TRI THỨC

Bài liên quan:

  1. Giải Sách bài tập Toán 11 (KNTT) Bài 7: Cấp số nhân
  2. Giải Sách bài tập Toán 11 (KNTT) Bài 6: Cấp số cộng
  3. Giải Sách bài tập Toán 11 (KNTT) Bài 5: Dãy số

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – KẾT NỐI

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.