• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Chân trời / Giải Sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng – CTST

Giải Sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng – CTST

Ngày 06/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Chân trời Tag với:GIAI SBT CHUONG 8 TOAN 11 CT

Giải Sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng – SÁCH GIÁO KHOA CHÂN TRỜI SÁNG TẠO 2024

================

Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Giải SBT Toán 11 trang 55

Bài 1 trang 55 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a2 . Biết rằng SA = SB = SC = SD, SO = 2a2 .

a) Chứng minh rằng SO ⊥ (ABCD).

b) Tính độ dài đường cao xuất phát từ đỉnh A của tam giác SAC.

Lời giải:

Cho hình chóp S ABCD có đáy là hình vuông tâm O cạnh a căn bậc hai 2 Biết rằng SA = SB = SC = SD

a)Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.

Ta có: Cho hình chóp S ABCD có đáy là hình vuông tâm O cạnh a căn bậc hai 2 Biết rằng SA = SB = SC = SD

Do đó SO ⊥ (ABCD)

b)Ta có: AC = 2a, OC = a, SC=SO2+OC2=3a.

Vẽ đường cao AH của ∆SAC.

Ta có: AH=SO.ACSC=2a2.2a3a=4a23.

Vậy độ dài đường cao xuất phát từ đỉnh A của tam giác SAC bằng 4a23.

Bài 2 trang 55 SBT Toán 11 Tập 2: Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD. Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD). Chứng minh rằng H là trực tâm của ∆BCD và AD ⊥ BC.

Lời giải:

Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD Gọi H là hình chiếu vuông góc của A

Theo giả thiết: Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD Gọi H là hình chiếu vuông góc của A

Suy ra CD ⊥AHB

Do đó CD ⊥ BH(1)

Chứng minh tương tự: CH ⊥ BD (2)

Từ (1) và (2) suy ra H là trực tâm của ∆BCD.

Do đó DH ⊥ BC.

Lại có AH ⊥ BC suy ra BC ⊥ (AHD).

Vậy H là trực tâm của ∆BCD và AD ⊥ BC.

Bài 3 trang 55 SBT Toán 11 Tập 2: Cho tứ diện ABCD có DA ⊥ (ABC), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ AH ⊥ MD tại H.

a) Chứng minh rằng AH ⊥ (BCD).

b) Gọi G, K lần lượt là trọng tâm của tam giác ABC và DBC. Chứng minh rằng GK ⊥ (ABC).

Lời giải:

Cho tứ diện ABCD có DA ⊥ (ABC) ABC là tam giác cân tại A Gọi M là trung điểm của BC

a)Tam giác ABC cân tại A ⇒ Trung tuyến AM ⊥ BC.

Lại có DA ⊥ (ABC) ⇒ DA ⊥ BC.

⇒ BC ⊥ (ADM) ⇔ BC ⊥ AH. (1)

Theo giả thiết: AH ⊥ DM. (2)

Từ (1) và (2) suy ra AH ⊥ (BCD).

b)Ta có: MKMD=MGMA=13 nên GK // AD (theo định lí Thalès).

Ta lại có AD ⊥ (ABC) suy ra GK ⊥ (ABC).

Bài 4 trang 55 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, SA = SC, SB = SD.

a) Chứng minh rằng SO ⊥ (ABCD).

b) Gọi I, J lần lượt là trung điểm của BA, BC. Chứng minh rằng IJ ⊥ (SBD).

c) Chứng minh rằng BD ⊥ (SAC).

Lời giải:

Cho hình chóp S ABCD có đáy là hình thoi O là giao điểm của hai đường chéo SA = SC SB = SD

a)Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.

Ta có: Cho hình chóp S ABCD có đáy là hình thoi O là giao điểm của hai đường chéo SA = SC SB = SD

Do đó SO ⊥ (ABCD)

b)Ta có AC ⊥ BD và AC ⊥ SO, suy ra AC ⊥ (SBD).

IJ là đường trung bình của ∆ABC nên IJ // AC.

Do đó IJ ⊥ (SBD).

c)Ta có BD ⊥ AC (ABCD là hình thoi) và BD ⊥ SO, suy ra BD ⊥ (SAC).

=============
THUỘC: Giải SÁCH bài tập Toán 11 – CTST

Bài liên quan:

  1. Giải Sách bài tập Toán 11 Bài tập cuối chương 8 – CTST
  2. Giải Sách bài tập Toán 11 Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện – CTST
  3. Giải Sách bài tập Toán 11 Bài 4: Khoảng cách trong không gian – CTST
  4. Giải Sách bài tập Toán 11 Bài 3: Hai mặt phẳng vuông góc – CTST
  5. Giải Sách bài tập Toán 11 Bài 1: Hai đường thẳng vuông góc – CTST

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – CHÂN TRỜI

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.