• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải sách bài tập toán 10 - Kết nối / Giải bài 4.27 trang 58 SBT Toán 10 – KN

Giải bài 4.27 trang 58 SBT Toán 10 – KN

Ngày 15/09/2022 Thuộc chủ đề:Giải sách bài tập toán 10 - Kết nối Tag với:Bài 10. Vectơ trong mặt phẳng tọa độ - SBT Toán 10 KNTT

Giải bài 4.27 trang 58 SBT Toán 10 – KN – KẾT NỐI TRI THỨC
CỦA BÀI HỌC: Bài 10. Vectơ trong mặt phẳng tọa độ – SBT Toán 10 KNTT

=======

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(1;2),\,\,B(3;4)\) và \(C(2; – 1).\)

a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm của tam giác đó.

b) Tìm tọa độ tâm \(I\) của đường tròn ngoại tiếp và trực tâm \(H\) của tam giác \(ABC.\)

Lời giải chi tiết

a) Ta có: \(\overrightarrow {AB}  = (2;2)\) và \(\overrightarrow {AC}  = (1; – 3)\)

Do \(\frac{2}{1} \ne \frac{2}{{ – 3}}\) nên các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương.

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác.

Gọi \(G\) là trọng tâm của \(\Delta ABC\) nên \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{1 + 3 + 2}}{3} = 2}\\{y = \frac{{2 + 4 – 1}}{3} = \frac{5}{3}}\end{array}} \right.\)

Vậy \(G\left( {2;\frac{5}{3}} \right).\)

b) Gọi \(I(x;y)\) của đường tròn ngoại tiếp và \(H(x’;y’)\) là trực tâm của \(\Delta ABC.\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{I{A^2} = I{B^2}}\\{I{A^2} = I{C^2}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{{{\left( {x – 1} \right)}^2} + {{\left( {y – 2} \right)}^2} = {{\left( {x – 3} \right)}^2} + {{\left( {y – 4} \right)}^2}}\\{{{\left( {x – 1} \right)}^2} + {{\left( {y – 2} \right)}^2} = {{\left( {x – 2} \right)}^2} + {{\left( {y + 1} \right)}^2}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 5}\\{x – 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{15}}{4}}\\{y = \frac{5}{4}}\end{array}} \right.} \right.\)

Vậy \(I\left( {\frac{{15}}{4};\frac{5}{4}} \right).\)

Ta có: \(\overrightarrow {IH}  = 3\overrightarrow {IG} \) \( \Leftrightarrow \left( {x’ – \frac{{15}}{4};y’ – \frac{5}{4}} \right) = 3\left( {\frac{{ – 7}}{4};\frac{5}{{12}}} \right)\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x’ – \frac{{15}}{4} = \frac{{ – 21}}{4}}\\{y’ – \frac{5}{4} = \frac{5}{4}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x’ = \frac{{ – 3}}{2}}\\{y’ = \frac{5}{2}}\end{array}} \right.\)

Bài liên quan:

  1. Giải bài 4.28 trang 58 SBT Toán 10 – KN
  2. Giải bài 4.26 trang 58 SBT Toán 10 – KN
  3. Giải bài 4.25 trang 58 SBT Toán 10 – KN
  4. Giải bài 4.23 trang 58 SBT Toán 10 – KN
  5. Giải bài 4.22 trang 58 SBT Toán 10 – KN

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập sách bài tập (SBT) Toán 10 – Kết nối

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.