• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Đề thi toán tuyển sinh 10 / Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

Ngày 12/05/2019 Thuộc chủ đề:Đề thi toán tuyển sinh 10 Tag với:De thi toan tuyen sinh 10

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4 (3lgh)


Câu 1. (2,0 điểm)

1. Tính giá trị của các biểu thức

\(M = \sqrt {36}  + \sqrt {25} \)  

\(N = \sqrt {{{\left( {\sqrt 5  – 1} \right)}^2}}  – \sqrt 5 \)

2. Cho biểu thức \(P = 1 + \dfrac{{x – \sqrt x }}{{\sqrt x  – 1}},\) với \(x \ge 0\) và \(x \ne 1\)

a) Rút gọn biểu thức P

b) Tìm giá trị của x, biết P > 3

Câu 2. (2 điểm)

1) Cho parabol \(\left( P \right):\;y = {x^2}\)  và  đường thẳng \(\left( d \right):\;y =  – x + 2.\)

a) Vẽ \(\left( d \right)\) và \(\left( P \right)\) trên cùng một mặt phẳng tọa độ Oxy.

b)  Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}3x + y = 5\\2x – y = 10\end{array} \right..\)

Câu 3. (2,5 điểm)

1) Cho phương trình \({x^2} – 2mx + 2m – 1 = 0\) (m là tham số)   (1)

a)  Giải phương trình (1) với \(m = 2.\)

b) Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\;{x_2}\) sao cho: \(\left( {x_1^2 – 2m{x_1} + 3} \right)\left( {x_2^2 – 2m{x_2} – 2} \right) = 50.\)

2) Quãng đường AB dài 50 km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10 km/h, nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.

Câu 4. (1,0 điểm):

Cho tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết AC = 8cm và BC = 10 cm. Tính độ dài AB, BH, CH  và AH.

Câu 5. (2,5 điểm)

Cho đường tròn tâm (O), từ điểm M ở bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D; O và B nằm về hai phía so với cát tuyến MCD).

a) Chứng minh tứ giác MAOB nội tiếp.

b) Chứng minh \(M{B^2} = MC.MD\)

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của \(\widehat {CHD}\).

Lời giải chi tiết

Câu 1.

1.  Tính giá trị của các biểu thức

\(M = \sqrt {36}  + \sqrt {25} \)

\(N = \sqrt {{{\left( {\sqrt 5  – 1} \right)}^2}}  – \sqrt 5 \)

Ta có:

\(M = \sqrt {36}  + \sqrt {25}  \)

\(\;\;\;\;\;= \sqrt {{6^2}}  + \sqrt {{5^2}}  = 6 + 5 = 11\)

\(N = \sqrt {{{\left( {\sqrt 5  – 1} \right)}^2}}  – \sqrt 5  \)

\(\;\;\;\;\;= \left| {\sqrt 5  – 1} \right| – \sqrt 5\)

\(\;\;\;\;\;  = \sqrt 5  – 1 – \sqrt 5  \)

\(\;\;\;\;\;=  – 1\,\,\left( {Do\,\sqrt 5  – 1 > 0\,\,} \right)\)

2. Cho biểu thức \(P = 1 + \dfrac{{x – \sqrt x }}{{\sqrt x  – 1}},\) với \(x \ge 0\) và \(x \ne 1\)

a)   Rút gọn biểu thức P

Với \(x \ge 0\) và \(x \ne 1\) ta có:

\(\begin{array}{l}P = 1 + \dfrac{{x – \sqrt x }}{{\sqrt x  – 1}}\\\,\,\,\,\, = 1 + \dfrac{{\sqrt x \left( {\sqrt x  – 1} \right)}}{{\sqrt x  – 1}}\\\,\,\,\,\, = 1 + \sqrt x \end{array}\)

b)  Tìm giá trị của x, biết P > 3

\(P > 3 \Leftrightarrow 1 + \sqrt x  > 3 \Leftrightarrow \sqrt x  > 2 \Leftrightarrow x > 4\)

Kết hợp với điều kiện: \(x \ge 0\) và \(x \ne 1\) ta được \(x > 4\)

Vậy với \(x > 4\) thì \(P > 3\)

Câu 2:

1) Cho parabol \(\left( P \right):\;\;y = {x^2}\)  và  đường thẳng \(\left( d \right):\;\;y =  – x + 2.\)

a) Vẽ  \(\left( d \right)\)  và \(\left( P \right)\) trên cùng một mặt phẳng tọa độ Oxy.

+) Vẽ đồ thị hàm số: \(\left( d \right):\;\;y =  – x + 2.\)

\(x\)

\(0\)

\(2\)

\(y =  – x + 2\)

\(2\)

\(0\)

+) Vẽ đồ thị hàm số: \(\left( P \right):\;\;y = {x^2}.\)

\(x\)

\( – 2\)

\( – 1\)

\(0\)

\(1\)

\(2\)

\(y = {x^2}\)

\(4\)

\(1\)

\(0\)

\(1\)

\(4\)

Đồ thị hàm số:

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

b)  Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình hoành độ giao điểm.

Ta có phương trình hoành độ giao điểm của hai đồ thị là:

\(\begin{array}{l}\;\;\; – x + 2 = {x^2}\\ \Leftrightarrow {x^2} + x – 2 = 0\\ \Leftrightarrow {x^2} + 2x – x – 2 = 0\\ \Leftrightarrow x\left( {x + 2} \right) – \left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\x – 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  – 2 \Rightarrow y = 4\\x = 1 \Rightarrow y = 1\end{array} \right..\end{array}\)

Vậy hai đồ thị cắt nhau tại hai điểm phân biệt \(A\left( { – 2;\;4} \right)\) và \(B\left( {1;\;1} \right).\)

2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}3x + y = 5\\2x – y = 10\end{array} \right..\)

\(\left\{ \begin{array}{l}3x + y = 5\\2x – y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2x – 10\\5x = 15\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 2.3 – 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y =  – 4\end{array} \right..\)

Vậy hệ phương trình có nghiệm duy nhất: \(\left( {x;\;y} \right) = \left( {3; – 4} \right).\)

Câu 3:

1) Cho phương trình \({x^2} – 2mx + 2m – 1 = 0\) (m là tham số)    (1)   

a)  Giải phương trình (1) với \(m = 2.\)

Thay \(m = 2\) vào phương trình \(\left( 1 \right)\) ta được:

\(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} – 4x + 3 = 0\\ \Leftrightarrow {x^2} – 3x – x + 3 = 0\\ \Leftrightarrow x\left( {x – 3} \right) – \left( {x – 3} \right) = 0\\ \Leftrightarrow \left( {x – 1} \right)\left( {x – 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 = 0\\x – 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right..\end{array}\)

Vậy với \(m = 2\) thì phương trình có tập nghiệm \(S = \left\{ {1;\;3} \right\}.\)

b) Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\;{x_2}\) sao cho: \(\left( {x_1^2 – 2m{x_1} + 3} \right)\left( {x_2^2 – 2m{x_2} – 2} \right) = 50.\)

Phương trình (1) có hai nghiệm phân biệt \( \Leftrightarrow \Delta ‘ > 0\)

\(\begin{array}{l} \Leftrightarrow {m^2} – 2m + 1 > 0\\ \Leftrightarrow {\left( {m – 1} \right)^2} > 0\\ \Leftrightarrow m – 1 \ne 0\\ \Leftrightarrow m \ne 1.\end{array}\)

Với \(m \ne 1\) thì phương trình (1) có hai nghiệm phân biệt \({x_1},\;\;{x_2}.\)

Khi đó ta có: \(\left\{ \begin{array}{l}x_1^2 – 2m{x_1} + 2m – 1 = 0\\x_1^2 – 2m{x_1} + 2m – 1 = 0\end{array} \right..\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = 2m – 1\end{array} \right..\)

Theo đề bài ta có: \(\left( {x_1^2 – 2m{x_1} + 3} \right)\left( {x_2^2 – 2m{x_2} – 2} \right) = 50\)

\(\begin{array}{l} \Leftrightarrow \left( {x_1^2 – 2m{x_1} + 2m – 1 – 2m + 4} \right)\left( {x_2^2 – 2m{x_2} + 2m – 1 – 2m – 1} \right) = 50\\ \Leftrightarrow \left( {4 – 2m} \right)\left( { – 2m – 1} \right) = 50\\ \Leftrightarrow \left( {2m – 4} \right)\left( {2m + 1} \right) = 50\\ \Leftrightarrow \left( {m – 2} \right)\left( {2m + 1} \right) = 25\\ \Leftrightarrow 2{m^2} + m – 4m – 2 = 25\\ \Leftrightarrow 2{m^2} – 3m – 27 = 0\\ \Leftrightarrow 2{m^2} – 9m + 6m – 27 = 0\\ \Leftrightarrow m\left( {2m – 9} \right) + 3\left( {2m – 9} \right) = 0\\ \Leftrightarrow \left( {2m – 9} \right)\left( {m + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2m – 9 = 0\\m + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{9}{2}\;\;\left( {tm} \right)\\m =  – 3\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy \(m = \dfrac{9}{2}\) và \(m =  – 3\) thỏa mãn điều kiện bài toán.

2) Quãng đường AB dài 50 km. Hai xe máy khởi hành cùng một lúc từ A đến B. Vận tốc xe thứ nhất lớn hơn vận tốc xe thứ hai 10 km/h, nên xe thứ nhất đến B trước xe thứ hai 15 phút. Tính vận tốc của mỗi xe.

Gọi vận tốc của xe thứ nhất là \(x\;\left( {km/h} \right)\;\;\left( {x > 10} \right).\)

\( \Rightarrow \) Vận tốc của xe thứ hai là: \(x – 10\;\;\left( {km/h} \right).\)

Thời gian xe thứ nhất đi từ A đến B là \(\dfrac{{50}}{x}\,\,\left( h \right)\) ;

Thời gian xe thứ hai đi từ A đến B là: \(\dfrac{{50}}{{x – 10}}\;\;\left( h \right).\)

Vì xe thứ nhất đến B trước xe thứ hai 15 phút = \(\dfrac{1}{4}h\) nên ta có phương trình: \(\dfrac{{50}}{{x – 10}} – \dfrac{{50}}{x} = \dfrac{1}{4}\)

\(\begin{array}{l} \Leftrightarrow 4.50.x – 4.50\left( {x – 10} \right) = x\left( {x – 10} \right)\\ \Leftrightarrow 200x – 200x + 2000 = {x^2} – 10x\\ \Leftrightarrow {x^2} – 10x – 2000 = 0\\ \Leftrightarrow {x^2} – 50x + 40x – 2000 = 0\\ \Leftrightarrow x\left( {x – 50} \right) + 40\left( {x – 50} \right) = 0\\ \Leftrightarrow \left( {x – 50} \right)\left( {x + 40} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 50 = 0\\x + 40 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 50\;\;\left( {tm} \right)\\x =  – 40\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

Vậy vận tốc của xe thứ nhất là \(50\;km/h\) và vận tốc xe thứ hai là \(50 – 10 = 40\;km/h.\)

Câu 4.

Cho tam giác ABC vuông tại A, đường cao AH \(\left( {H \in BC} \right)\) . Biết AC = 8cm và BC = 10 cm. Tính độ dài AB, BH, CH  và AH.

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

+) Tính  AB

Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có: \(\begin{array}{l}A{B^2} + A{C^2} = B{C^2}\\ \Rightarrow A{B^2} = B{C^2} – A{C^2} = {10^2} – {8^2} = 36\\ \Rightarrow AB = 6\left( {cm} \right)\end{array}\)

+) Tính BH

Áp dụng hệ thức lượng trong tam giác vuông ABC có: \(A{B^2} = BH.BC\)

\(\Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{6^2}}}{{10}} = 3,6\left( {cm} \right)\)

+) Tính CH

Áp dụng hệ thức lượng trong tam giác vuông ABC có: \(A{C^2} = CH.BC \)

\(\Rightarrow CH = \dfrac{{A{C^2}}}{{BC}} = \dfrac{{{8^2}}}{{10}} = 6,4\left( {cm} \right)\)

+) Tính AH

Áp dụng hệ thức lượng trong tam giác vuông ABC  ta có: \(A{H^2} = BH.CH = 3,6.6,4 = 23,04\) \( \Rightarrow AH = 4,8\left( {cm} \right)\)

Câu 5.

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 4

a) Chứng minh tứ giác MAOB nội tiếp.

Ta có \(\widehat {OAM} = \widehat {OBM} = {90^0}\) (Do MA, MB là tiếp tuyến của đường tròn (O))

Xét tứ giác OAMB có: \(\widehat {OAM} + \widehat {OBM} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác OAMB là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

b) Chứng minh \(M{B^2} = MC.MD\)

Xét tam giác MBC và tam giác MDB có:

\(\widehat {BMD}\) chung;

\(\widehat {MBC} = \widehat {MDB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BC)

\( \Rightarrow \Delta MBC \sim \Delta MDB\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{MB}}{{MD}} = \dfrac{{MC}}{{MB}}\)

\(\Rightarrow M{B^2} = MC.MD\)

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của \(\widehat {CHD}\).

Ta có \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow M\) thuộc trung trực của AB;

\(OA = OB\,\,\left( { = R} \right) \Rightarrow O\) thuộc trung trực của AB;

\( \Rightarrow OM\) là trung trực của AB \( \Rightarrow OM \bot AB\)

Xét tam giác vuông OMB có \(M{B^2} = MH.MO\) (hệ thức lượng trong tam giác vuông).

Mà \(M{B^2} = MC.MD\,\,\left( {cmt} \right) \)

\(\Rightarrow MH.MO = MC.MD\)

\(\Rightarrow \dfrac{{MC}}{{MO}} = \dfrac{{MH}}{{MD}}\)

Xét tam giác MCH và MOD có :

\(\widehat {OMD}\) chung ;

\(\dfrac{{MC}}{{MO}} = \dfrac{{MH}}{{MD}}\,\,\,\left( {cmt} \right)\); \(\Delta MCH \sim \Delta MOD\,\,\left( {c.g.c} \right) \)

\(\Rightarrow \widehat {MHC} = \widehat {MDO}\)

(hai góc tương ứng) (1).

Mà \(\widehat {MHC} + \widehat {OHC} = {180^0}\) \( \Rightarrow \widehat {MDO} + \widehat {OHC} = {180^0} \Rightarrow \) Tứ giác OHCD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

\( \Rightarrow \widehat {OHD} = \widehat {OCD}\) (2) (hai góc nội tiếp cùng chắn cung OD).

Mà \(\widehat {OCD} = \widehat {ODC} = \widehat {MDO}\) (3) (tam giác OCDcân tại O);

Từ (1), (2) và (3) \( \Rightarrow \widehat {MHC} = \widehat {OHD}\).

\( \Rightarrow {90^0} – \widehat {MHC} = {90^0} – \widehat {OHD} \) \(\Rightarrow \widehat {CHB} = \widehat {BHD}\).

Vậy HB là tia phân giác của góc CHD hay AB là tia phân giác của góc CHD.

Bài liên quan:

  1. ĐỀ TOÁN VÀO LỚP 10 – Vòng 1 – Chuyên KHTN Hà Nội – 2023 – 2024
  2. ĐÁP ÁN MÔN TOÁN – HỆ TOÁN CHUYÊN – TỈNH QUẢNG NINH 2023 – 2024 (V2)
  3. ĐỀ THI TOÁN VÀO LỚP 10 2023 – 2024 – AN GIANG
  4. ĐỀ THI TOAN 9 – ĐỀ HAY THI VÀO LỚP 10
  5. ÔN LUYỆN môn TOÁN THI VÀO 10
  6. ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH ĐAK LẮC, ĐỒNG NAI NĂM 2019-2020
  7. ĐỀ TUYỂN SINH TOÁN QUẬN GÒ VẤP TPHCM – 2024
  8. ĐỀ ÔN THI TUYỂN SINH TOÁN VÀO LỚP 10 – TP.HCM – 2024
  9. 80 ĐỀ THI TUYỂN SINH VÀO 10 MÔN TOÁN CHUYÊN CÁC TỈNH NĂM HỌC 2022-2023 WORD
  10. TUYỂN TÂP ĐỀ TOÁN THAM KHẢO TUYỂN SINH 10 TPHCM 23-24 BẢN CHÍNH PDF.pdf
  11. BỘ 20 ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN CÁC TỈNH NĂM HỌC 2021-2022 FILE WORD
  12. Sưu tầm các đề thi Toán vào lớp 10 toàn quốc 2022 – 2023
  13. VÀI ĐỀ THI THỬ MÔN TOÁN LỚP 9 VÀO LỚP 10 – HÀ NỘI – 2022
  14. 10 Đề thi tham khảo thi vào lớp 10 môn Toán 2023 – Q6 – HCM – file word
  15. Đề tham khảo môn Toán tuyển sinh vào lớp 10 – Số 12

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bộ đề ôn thi TN THPT 2025-TS Trần Văn Tấn CB.pdf
  • ĐỀ THAM KHAO TS10 NH 2025-2026 – HCM.pdf
  • TÀI LIỆU ÔN THI VÀO LỚP 10 MÔN TOÁN

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.